본 논문에서는 웨이블릿 변환 기반 스케일러블 비디오 부호화에서 가장 중요한 요소 기술인 움직임 보상 시간적 필터링 방법의 성능에 관련된 요소들의 특성을 파악하고, 기존의 DCT 기반의 하이브리드 부호화에서 사용된 움직임 예측 방법과 가변 크기 블록을 사용한 움직임 예측 방법을 적용한 향상된 MCTF (Motion Compensated Temporal Filtering) 방법을 제안한다. 이를 통하여 시간적 필터링 과정에서의 연결성을 높이고, 프레임간 에너지를 저/고주파 프레임으로 효율적으로 분해할 수 있다. 그 결과, 고주파 프레임의 에너지를 줄여, 엔트로피 부호화 비트율을 줄일 수 있다. 본 논문에서 제안하는 방법을 적용하여 모의 실험한 결과, 고주파 프레임에 포함된 에너지가 최대 25.86%까지 감소하는 것을 확인하였다.
This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.
본 논문에서는 실시간 감시 시스템에서 녹화 도중에 검출된 움직임 벡터를 이용하여 사람의 활동성을 인식하고 분석하고자 한다. 전경에서 블랍(사람)을 검출하는 방법은 기존에 연구했던 차 영상을 이용하였고, MPEG-4 동영상 녹화 시 EPZS(Enhanced Predictive Zonal Search)에서 검출되는 움직임 벡터의 값을 이용하였다. 본 논문에서는 사람의 행동을 크게 세 가지의 {Active, Inactive}, {Moving, Non-moving}, {Walking, Running} 메타 클래스로 분류하고 인식하였다. 각 단계에서는 단계별 임계값을 이용하여 구분하였다. 실험을 위해서 약 150개의 상황을 연출하였으며, 실험 영상에서 각 단계를 구분하는데 약 86% ~ 98% 까지의 높은 인식률을 보였다.
기존 비디오 표준과 비교해 볼 때, H.264 비디오 표준이 갖는 중요한 두 가지 특징으로는 높은 부호화 효율과 네트워크 친화성을 들 수 있다. 그러나 이러한 중요한 특성에도 불구하고 H.264 표준은 구현시 요구되는 메모리 대역폭과 연산량의 복잡도가 높기 때문에 실시간 응용에 적용하는데 어려움이 있다. H.264 부호화 기술 가운데 특히 복수 참조 영상을 이용한 다양한 블록 단위 움직임 탐색은 높은 부호화 효율을 갖도록 하는 핵심 요소지만 최적의 움직임 벡터를 찾기 위해 다양한 블록 단위 조합의 모든 경우에 대하여 SAD (Sum of Absolute Difference)를 구해야 하므로 상당한 계산량을 요구한다. 그러므로 본 논문에서는 움직임 탐색의 연산량을 줄이기 위해 정수화소 움직임 탐색 및 부화소 움직임 탐색을 위한 고속 알고리즘을 제안한다. 정수화소 단위 움직임 탐색의 경우, 기존의 고속 움직임 탐색 기법은 H.264의 다양한 블록 단위 움직임 탐색 구조에 그대로 적용할 경우 효과적이지 못하기 때문에 본 논문에서는 종래 다이아몬드 탐색 기반 방법을 계층적 블록 구조에 맞게 개선한 적응적 움직임 탐색 기법을 제안하도록 한다. 또한 부화소 단위 움직임 탐색을 위해서는 움직임 벡터의 통계적 특성을 이용하여 예측벡터를 중심으로 한 다이아몬드 탐색 기반 고속 알고리즘을 제안한다.
많은 경우의 예측 비디오 압축 표준에서는, BMA에 의해 매크로 블록당 하나의 움직임 벡터가 계산되는 방식인 BMC방식이 널리 사용되고 있다. 그러나 BMC에 의해 예측된 움직임 벡터 필드는 블록당 하나의 움직임 벡터를 사용하기 때문에 불연속적이며, 불연속적인 움직임 벡터 필드로 인해 블록화 현상을 나타낸다. 따라서 이를 제거하는 효과적인 방법은 움직임 벡터 필드를 평활화(smoothing)하는 방법일 것이다. 최적 평활화 과정은 비디오 시퀀스의 움직임 종류에 따라 다를 것이다. 본 논문에서는 움직임 벡터를 평활화하는 몇 개의 방법들을 고려할 것이다. 어떠한 방법이든 BMA로 구한 움직임 벡터는 더 이상 최적화된 움직임 벡터가 아닐 것이므로, BFD(displaced frame difference)의 놈(norm)을 최소화하는 최적 움직임 벡터를 찾아야 한다. 본 논문에서는 conjugate gradient 알고리즘을 사용하여 DFD의 놈을 최소화하는 최적움직임 벡터를 찾는 통합 알고리즘을 제안한다. 이 통합 알고리즘은 ATMC(affine transform based motion compensation), BTMC(bilinear transform based motion compensation), 그리고 본 논문에서 제안하는 FMC(filtered motion compensation)의 세가지 방식에 대하여 적용되고 BMC에 대비해서 평가되어 졌다.
본 논문에서는 현재 표준화가 진행 중인 HEVC(High Efficiency Video Coding)에서 양예측(bi-predictive)모드에 존재하는 문제점을 거론하고 문제점에 대한 해결방안을 제시하여 부호화 효율을 증가시키고 계산 복잡도를 감소시키는 방법을 제안한다. 현재 HM 3.0에서는 양예측을 사용하는 블록에서 L0 움직임 정보와 L1 움직임 정보가 동일해지는 경우가 빈번히 발생한다. 본 논문에서는 이러한 현상이 발생하는 경우 L1의 움직임 벡터를 현재 블록의 주변 블록의 (0,0)이 아닌 L0 움직임 벡터로 대체 하고, 여전히 L0 움직임 벡터와 L1 움직임 벡터가 동일할 경우 예측모드를 단예측으로 변경하여 부호화 성능을 향상 시키고 계산 복잡도를 감소시키는 방법을 제안하였다. 실험 결과, LD(Low-Delay) 실험조건의 경우 기존 대비 복호화기의 수행시간을 2% ~ 5% 감소시키고 부호화 성능을 약 0.3% ~ 0.5% 향상 시켰다.
제한된 통신 채널을 통한 실시간 전송을 위해 비디오 데이터의 압축이 필요하다. 압축된 영상 비트열은 전송 중에 발생되는 오류에 아주 민감하다. 전송 과정에서 오류가 발생된 패킷을 받게 되면, 복호기에서는 현재 입력되는 프레임을 잘못 재구성하게 되고 영상의 시공간적 특성에 의해 연속되는 프레임으로 전파된다. 이런 복호 영상의 화질 저하를 줄일 수 있는 방법으로 오류 검출과 오류 은닉이 있다. 이 논문에서는 오류 검출률을 높이기 위해 정보 숨김을 이용한 새로운 오류 검출 방법을 제안한다. H.264/AVC의 화면간 예측에서 발생하는 각 매크로블록의 움직임 벡터의 차분값에 특정한 정보를 숨겨 부호화하였다. 복호기에서는 전송받은 특정 정보의 체크를 통해 오류의 위치를 쉽게 찾아낼 수 있도록 하였다. H.324M 모바일 실험 도구를 이용한 실험 환경을 통해 제안한 알고리즘이 PSNR과 주관적 화질 측면에서 좋은 성능을 보임을 확인하였다.
움직임 추정은 비디오신호의 압축에 중요한 역할을 한다. 본 논문은 효율적으로 움직임 벡터를 찾기 위하여 움직임 벡터의 시간적, 공간적 유사성을 이용하였다. 벡터를 검색하기 이전에 움직임 벡터의 검색 범위를 크게 9개의 영역으로 나눈 후, 이전 프레임에서 동일한 위치, 현재 프레임의 현재 매크로블록의 상위, 상우와 좌측의 매크로블록에서의 움직임 벡터까지 총 4개의 움직임 벡터를 이용하여 9개의 영역 중 한 영역을 제 1 후보, 그를 둘러싼 영역을 제 2 후보라 정하고 극소점들(Local Minima)을 피하였다. 모의실험을 통한 결과 NDS(New Diamond Search) 알고리즘에 비하여 매크로블록 당 평균 탐색 포인트 수가 5.79 포인트 감소하고, MSE는 최대 104.23 감소한 것을 확인할 수 있었다.
움직임 벡터의 상관도, 움직임 벡터의 분포특성, 블록 정합 오류의 특성은 탐색 패턴과 탐색 방법을 결정하는 중요한 요소이다. 일반적으로 움직임 벡터는 주로 탐색영역의 가운데를 중심으로 수평 흑은 수직축에 주로 분포한다. 또한 탐색 영역 내의 정합 오류 값의 분포를 보면 움직임 벡터의 분포와 비슷한 형태로 정합 오류의 값들이 수평 혹은 수직 방향으로 최소 정합 오류 값의 위치로 단조 감소해 나간다. 본 논문에서는 이러한 블록 정합 오류의 특성을 이용한 새로운 탐색 방법을 제안하며 주변 블록의 움직임 벡터의 상관도를 이용하여 초기 탐색 지점을 선택하는 고속 움직임 추정 알고리즘을 제안한다. 또한 모의실험을 통하여 기존의 여러 움직임 추정 알고리즘과 비교하여 PSNR 의 감소는 거의 없으면서 매크로블록당 평균 탐색포인트와 수행 시간의 향상을 얻을 수 있음을 확인한다.
본 논문에서는 영상 압축에 있어서 사용되는 새로운 고속 움직임 추정 기법에 대해 소개한다. 전역 탐색 블록 정합 알고리즘(FSBMA)은 최상의 PSNR을 갖는 화질로 움직임 벡터를 추정할 수 있지만 높은 계산량으로 인하여 실시간 구현에 부적합하다는 단점을 가지고 있다. 그러므로 계산량을 낮추면서 유사한 화질을 유지할 수 있는 많은 고속 탐색 기법들이 제안되어 왔다. 본 논문에서는 기존의 잘 알려진 고속 블록 정합 알고리즘을 수정 보완한 새로운 알고리즘을 제안한다. 제안한 방법에서는 움직임 추정에서의 고속 블록 정합 알고리즘에 있어 변형된 다이아몬드(Diamond) 탐색 기법을 이용하여 영상이 갖는 서로 다른 움직임 패턴에 대해 움직임의 방향성에 따라 적응적으로 탐색 방향과 패턴을 달리하면서 움직임을 예측하여 다이아몬드(Diamond)탐색 알고리즘과 유사한 화질을 유지하면서 보다 적은 계산량을 가지고 움직임 벡터를 추정학 수 있다. 또한 이를 PMVFAST(Predictive Motion Vector Field Adaptive Search Technique)와 결합함으로서 보다 좋은 화질을 가질 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.