• Title/Summary/Keyword: Predictive models

Search Result 1,013, Processing Time 0.021 seconds

A Study on Predictive Models based on the Machine Learning for Evaluating the Extent of Hazardous Zone of Explosive Gases (기계학습 기반의 가스폭발위험범위 예측모델에 관한 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, predictive models based on machine learning for evaluating the extent of hazardous zone of explosive gases are developed. They are able to provide important guidelines for installing the explosion proof apparatus. 1,200 research data sets including 12 combustible gases and their extents of hazardous zone are generated to train predictive models. The extent of hazardous zone is set to an output variable and 12 variables affecting an output are set as input variables. Multiple linear regression, principal component regression, and artificial neural network are employed to train predictive models. Mean absolute percentage errors of multiple linear regression, principal component regression, and artificial neural network are 44.2%, 49.3%, and 5.7% and root mean square errors are 1.389m, 1.602m, and 0.203 m respectively. Therefore, it can be concluded that the artificial neural network shows the best performance. This model can be easily used to evaluate the extent of hazardous zone for explosive gases.

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.

Iowa Liquor Sales Data Predictive Analysis Using Spark

  • Ankita Paul;Shuvadeep Kundu;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • v.31 no.2
    • /
    • pp.185-196
    • /
    • 2021
  • The paper aims to analyze and predict sales of liquor in the state of Iowa by applying machine learning algorithms to models built for prediction. We have taken recourse of Azure ML and Spark ML for our predictive analysis, which is legacy machine learning (ML) systems and Big Data ML, respectively. We have worked on the Iowa liquor sales dataset comprising of records from 2012 to 2019 in 24 columns and approximately 1.8 million rows. We have concluded by comparing the models with different algorithms applied and their accuracy in predicting the sales using both Azure ML and Spark ML. We find that the Linear Regression model has the highest precision and Decision Forest Regression has the fastest computing time with the sample data set using the legacy Azure ML systems. Decision Tree Regression model in Spark ML has the highest accuracy with the quickest computing time for the entire data set using the Big Data Spark systems.

The Development of Predictive Growth Models for Total Viable Cells and Escherichia coli on Chicken Breast as a Function of Temperature

  • Heo, Chan;Kim, Ji-Hyun;Kim, Hyoun-Wook;Lee, Joo-Yeon;Hong, Wan-Soo;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • The aim of this research was to estimate the effect of temperature and develop predictive models for the growth of total viable cells (TVC) and Escherichia coli (EC) on chicken breast under aerobic and various temperature conditions. The primary models were determined by Baranyi model. The secondary models for the specific growth rate (SGR) and lag time (LT), as a function of storage temperature, were developed by the polynomial model. The initial contamination level of chicken breasts was around 4.3 Log CFU/g of TVC and 1.0 Log CFU/g of E. coli. During 216 h of storage, SGR of TVC showed 0.05, 0.15, and 0.54 Log CFU/g/h at 5, 15, and $25^{\circ}C$. Also, the growth tendency of EC was similar to those of TVC. As storage temperature increased, the values of SGR of microorganisms increased dramatically and the values of LT decreased inversely. The predicted growth models with experimental data were evaluated by $B_f$, $A_f$, RMSE, and $R^2$. These values indicated that these developed models were reliable to express the growth of TVC and EC on chicken breasts. The temperature changes of distribution and showcase in markets might affect the growth of microorganisms and spoilage of chicken breast mainly.

Estimation of Shelf-life of Frankfurter Using Predictive Models of Spoilage Bacterial Growth

  • Heo, Chan;Choi, Yun-Sang;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.289-295
    • /
    • 2009
  • The aim of this research was to develop predictive models for the growth of spoilage bacteria (total viable cells, Pseudomonas spp., and lactic acid bacteria) on frankfurters and to estimate the shelf-life of frankfurters under aerobic conditions at various storage temperatures (5, 15, and $25^{\circ}C$). The primary models were determined using the Baranyi model equation. The secondary models for maximum specific growth rate and lag time as functions of temperature were developed by the polynomial model equation. During 21 d of storage under various temperature conditions, lactic acid bacteria showed the longest lag time and the slowest growth rate among spoilage bacteria. The growth patterns of total viable cells and Pseudomonas spp. were similar each other. These data suggest that Pseudomonas spp. might be the dominant spoilage bacteria on frankfurters. As storage temperature increased, the growth rate of spoilage bacteria also increased and the lag time decreased. Furthermore, the shelf-life of frankfurters decreased from 7.0 to 4.3 and 1.9 (d) under increased temperature conditions. These results indicate that the most significant factor for spoilage bacteria growth is storage temperature. The values of $B_f$, $A_f$, RMSE, and $R^2$ indicate that these models were reliable for identifying the point of microbiological hazard for spoilage bacteria in frankfurters.

Comparative Molecular Field Analysis of Dioxins and Dioxin-like Compounds

  • Ashek, Ali;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • Because of their widespread occurrence and substantial biological activity, halogenated aromatic hydrocarbons are one of the important classes of contaminants in the environment. We have performed comparative molecular field analysis (CoMFA) on structurally diverse ligands of Ah (dioxin) receptor to explore the physico-chemical requirements for binding. All CoMFA models have given $q^{2}$ value of more than 0.5 and $r^{2}$ value of more than 0.83. The predictive ability of the models was validated by an external test set, which gave satisfactory predictive $r^{2}$ values. Best predictions were obtained with CoMFA model of combined modified training set ($q^{2}=0.631,\;r^{2}=0.900$), giving predictive residual value = 0.002 log unit for the test compound. We have suggested a model comprises of four structurally different compounds, which offers a good predictability for various ligands. Our QSAR model is consistent with all previously established QSAR models with less structurally diverse ligands. The implications of the CoMFA/QSAR model presented herein are explored with respect to quantitative hazard identification of potential toxicants.

Development of an incident impact analysis system using short-term traffic forecasts (단기예측기법을 이용한 연속류 유고영향 분석시스템)

  • Yu, Jeong-Whon;Kim, Ji-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Predictive information on the freeway incident impacts can be a critical criterion in selecting travel options for users and in operating transportation system for operators. Provided properly, users can select time-effective route and operators can effectively run the system efficiently. In this study, a model is proposed to predict freeway incident impacts. The predictive model for incident impacts is based on short-term prediction. The proposed models are examined using MARE. The analysis results suggest that the models are accurate enough to be deployed in a real-world. The development of microscopic models to predict incident effects is expected to help minimize traffic delay and mitigate related social costs.

Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation (콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

Development of a Predictive Model Describing the Growth of Staphylococcus aureus in Ready-to-Eat Sandwiches (즉석섭취 샌드위치에서의 Staphylococcus aureus 성장예측모델 개발)

  • Park, Hae-Jung;Bae, Hyun-Joo
    • Journal of the FoodService Safety
    • /
    • v.2 no.2
    • /
    • pp.91-96
    • /
    • 2021
  • This study was performed to provide fundamental data on hygiene and quality control of ready-to-eat sandwiches. Predictive models were developed to the kinetics of Staphylococcus aureus growth in these sandwiches as a function of temperature (10, 15, 25, and 35℃). The result of the primary model that used the Gompertz equation showed that the lag phase duration (LPD) and generation time (GT) decreased and the exponential growth rate (EGR) increased with increasing storage temperature. The secondary model showed an R2 for M and B of 0.9967 and 09916, respectively. A predictive growth model of the growth degree as a function of temperature was developed. L(t)=A+Cexp(-exp(-B(t-M))) (A=Initial contamination level, C=MPD-A, B=0.473166-0.045040*Temp-0.001718*Temp*Temp, M=19.924824-0.627442*Temp-0.004493*Temp*Temp, t=time, Temp=temperature). This model showed an R2 value of 0.9288. All the models developed in this study showed a good fit.