• 제목/요약/키워드: Predictive fault analysis

검색결과 39건 처리시간 0.026초

배전선로 고장예지를 위한 애자의 고장징후 특성에 관한 연구 (A Feasibility Study on the Characterization of Incipient Insulator Failure for Distribution Fault Prediction)

  • 신정훈;김태원;박성택;김창종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.245-249
    • /
    • 1997
  • A feasibility study on the characterization of incipient insulator failure for distribution fault prediction is presented. In this study, real distribution data was collected and analyzed to isolate incipient failure signatures or parameters which were expected to show distinct behaviors before and after failure incident. Several signal analysis methods were applied to isolate the parameters and a new strategy of analysis, the event-date concept, was also applied to find a relationship between non-harmonic and high frequency signal activities and imminent insulator failures.

  • PDF

A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

  • Wang, Chao;Liu, Xiao;Liu, Hui;Chen, Zhe
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.29-37
    • /
    • 2016
  • Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estimated rotor position and the actual output of the position sensor. Extreme Learning Machine (ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is utilized to design an assembled estimator for the rotor position detection. The data for building the ELM based assembled position estimator is derived from the magnetization curves which are obtained from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at various operating conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.1-8
    • /
    • 2023
  • 자동차의 주요 부품인 휠 베어링에 결함이 생기면 교통사고등 문제를 발생시켜 이를 해결하기 위해 빅데이터를 수집해서 예측진단 및 관리 기술을 통한 휠 베어링의 고장 유무 및 고장 유형을 조기에 알려 주는 알고리즘과 모니터링 시스템 개발이 필요하다. 본 논문에서는 이러한 지능형 휠 허브 베어링 정비 시스템 구현을 위해 신뢰성 및 건전성에 대한 모니터링용 센서 및 예측 진단하는 알고리즘이 탑재된 임베디드 시스템을 개발하였다. 사용된 알고리즘은 휠 베어링에 설치된 가속도 센서로부터 진동 신호를 취득하고 이를 신호 처리기법, 결함주파수 분석, 건전성 특징 인자정의 등의 과정을 빅데이터 기술을 통해 고장을 예측하고 진단할 수 있다. 구현된 알고리즘은 진동 주파수 성분들은 최소화하고 휠 베어링에서 발생하는 진동 성분을 극대화할 수 있는 안정 신호 추출 알고리즘을 적용하고, 필터를 활용한 노이즈 제거에서는 인공지능 기반의 건전성 추출 알고리즘을 적용하였으며, FFT를 통한 결함 주파수를 분석하여 고장 특성인자 추출을 통한 고장을 진단하였다. 본 시스템의 성능 목표는 12,800ODR 이상으로 시험 결과를 통해 목표치를 만족하였다.

EIV를 이용한 신경회로망 기반 고장진단 방법 (Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables))

  • 한형섭;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.1020-1028
    • /
    • 2011
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

물류 회전설비 고장예지 시스템 (A Fault Prognostic System for the Logistics Rotational Equipment)

  • 김수형;볘르드바에브 예르갈리;조형기;김규익;김진석
    • 산업경영시스템학회지
    • /
    • 제46권2호
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

Using Bayesian network and Intuitionistic fuzzy Analytic Hierarchy Process to assess the risk of water inrush from fault in subsea tunnel

  • Song, Qian;Xue, Yiguo;Li, Guangkun;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng;Zhou, Binghua
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.605-614
    • /
    • 2021
  • Water inrush from fault is one of the most severe hazards during tunnel excavation. However, the traditional evaluation methods are deficient in both quantitative evaluation and uncertainty handling. In this paper, a comprehensive methodology method combined intuitionistic fuzzy AHP with a Bayesian network for the risk assessment of water inrush from fault in the subsea tunnel was proposed. Through the intuitionistic fuzzy analytic hierarchy process to replace the traditional expert scoring method to determine the prior probability of the node in the Bayesian network. After the field data is normalized, it is classified according to the data range. Then, using obtained results into the Bayesian network, conduct a risk assessment with field data which have processed of water inrush disaster on the tunnel. Simultaneously, a sensitivity analysis technique was utilized to investigate each factor's contribution rate to determine the most critical factor affecting tunnel water inrush risk. Taking Qingdao Kiaochow Bay Tunnel as an example, by predictive analysis of fifteen fault zones, thirteen of them are consistent with the actual situation which shows that the IFAHP-Bayesian Network method is feasible and applicable. Through sensitivity analysis, it is shown that the Fissure development and Apparent resistivity are more critical comparing than other factor especially the Permeability coefficient and Fault dip. The method can provide planners and engineers with adequate decision-making support, which is vital to prevent and control tunnel water inrush.

원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안 (The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump)

  • 김희찬
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

MTS 기법을 이용한 회전기기의 이상진단 (A Fault Diagnosis on the Rotating Machinery Using MTS)

  • 박원식;이해진;이정윤;김동섭;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.770-773
    • /
    • 2007
  • As higher reliability and accuracy on production facilities are required to detect incipient faults, a diagnostic system for predictive maintenance of the facility is highly recommended. In this paper, it presents a study on the application of vibration signals to diagnose faults for a Rotating Machinery using the Mahalanobis Distance-Taguchi System. RMS, Crest Factor and Kurtosis that is known as the Statistical Methods and the spectrum analysis are used to diagnose faults as parameters of Mahalanobis distance.

  • PDF

마할라노비스 거리를 이용한 회전기기의 이상진단 (A Fault Diagnosis on the Rotating Machinery Using Mahalanobis Distance)

  • 박상길;박원식;정재은;이유엽;오재응
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.556-560
    • /
    • 2008
  • As higher reliability and accuracy on production facilities are required to detect incipient faults, a diagnostic system for predictive maintenance of the facility is highly recommended. In this paper, we present a study on the application of vibration signals to diagnose faults for a Rotating Machinery using the Mahalanobis Distance-Taguchi System. RMS, Crest Factor and Kurtosis that is known as the Statistical Methods and the spectrum analysis are used to diagnose faults as parameters of Mahalanobis distance.