• 제목/요약/키워드: Predictive current control

검색결과 205건 처리시간 0.023초

스위칭 손실을 줄이기 위한 모듈형 멀티레벨 컨버터의 제어 방법 (Control Method of Modular Multilevel Converter to Reduce Switching Losses)

  • 박소영;김재창;곽상신
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.476-483
    • /
    • 2017
  • In this paper, a voltage-based model predictive control (MPC) scheme for a modular multilevel converter is used to reduce switching loss. The proposed method calculates an offset voltage that clamps the switching operation of submodules in which the current greatly flows at every sampling period by using the reference phase voltage and the reference phase current. To use the offset voltage, the proposed method converts the current-based MPC to the voltage-based MPC. The proposed voltage-based MPC then generates a new reference pole voltage that clamps the switching of submodules by applying the calculated offset voltage to the phase voltage. Therefore, the proposed method can reduce the switching loss by stopping the switching operation of submodules in which the current greatly flows. The switching loss reduction effect of the proposed method is verified by comparing its loss data with those of the conventional MPC method.

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

Design and Experimental Validation of a Digital Predictive Controller for Variable-Speed Wind Turbine Systems

  • Babes, Badreddine;Rahmani, Lazhar;Chaoui, Abdelmadjid;Hamouda, Noureddine
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.232-241
    • /
    • 2017
  • Advanced control algorithms must be used to make wind power generation truly cost effective and reliable. In this study, we develop a new and simple control scheme that employs model predictive control (MPC), which is used in permanent magnet synchronous generators and grid-connected inverters. The proposed control law is based on two points, namely, MPC-based torque-current control loop is used for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based direct power control loop is used for the grid-side converter to satisfy the grid code and help improve system stability. Moreover, a simple prediction scheme is developed for the direct-drive wind energy conversion system (WECS) to reduce the computation burden for real-time applications. A small-scale WECS laboratory prototype is built and evaluated to verify the validity of the developed control methods. Acceptable results are obtained from the real-time implementation of the proposed MPC methods for WECS.

일반화된 예측제어에 의한 가압경수형 원자로의 부하추종 출력제어에 관한 연구 (Generalized predictive control of P.W.R. nuclear power plant)

  • 천희영;박귀태;이종렬;박영환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.663-668
    • /
    • 1990
  • This paper deals with the application of a Generalized Predictive Control (CPC) to a Pressurized Water Reactor (P.W.R) Nuclear Power Plant. Generalized Predictive Control is a sort of Explicit Self-Tuning Control. Current self-tuning algorithms lack robustness to prior choices of either dead-time (input time delay of a plant) or model order. GPC is shown by simulation studies to be superior to accepted self-tuning techniques such as minimum variance and pole-placement from the viewpoint that it is robust to prior choices of dead-time or model order. In this paper a GPC controller is designed to control the P.W.R. nuclear power rlant with varying dead-time and through the designing procedure the designer is free from the constraint of knowing the exact dead-time. The controller is constructed based on the 2nd order linear model approximated in the vicinity of operating point. To ensure that this low-order model describes the complex real dynamics well enough for control purposes, model parameters are updated on-line with a Recursive Least Squares algorithm. Simulation results are successful and show the possibilities of the GPC control application to actual plants with varying or unknown dead-time.

  • PDF

Current Dynamically Predicting Control of PMSM Targeting the Current Vectors

  • Sun, Hexu;Jing, Kai;Dong, Yan;Zheng, Yi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1058-1065
    • /
    • 2015
  • This paper present a current predicting control method for PMSM (permanent magnet synchronous motor) to improve the tracking performance of stator current, which regards the current vector as the control target. Solving the model state equation in the static frame (α-β frame), the dynamic change of current vector will be gained as three independent terms. These change terms, which contain the prediction of current vector, are discretized and simplified by Taylor series expansion and used to get the voltage vector as the predictive control quantity. SVPWM will transform the control voltage to the switching signal of inverter, which is newly deduced for the current vector. Simulation and experiment results are given to testy and verify the performance of this method.

3상 PWM 컨버터의 전류제어기 비교에 관한 연구 (A study on Current Controller Comparision for Three-phase PWM Converter)

  • 한홍일;함년근;성낙규;김길동;김대균;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1248-1250
    • /
    • 2000
  • The aim of this paper is to present a review of recently used current control technique for three-phase voltage source pulse-width modulated converters. Various technique, different in concept, three current control methods are presented in this paper. Current -control methods to be applied in system are PI controller. Predictive current controller. Minimum-time current controller respectively. In initial state and transient state, the response characteristics of three current control methods are verified through simulations.

  • PDF

Stability and Performance Investigations of Model Predictive Controlled Active-Front-End (AFE) Rectifiers for Energy Storage Systems

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.202-215
    • /
    • 2015
  • This paper investigates the stability and performance of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems, which has been increasingly applied in power distribution sectors and in renewable energy sources to ensure an uninterruptable power supply. The model predictive control (MPC) algorithm utilizes the discrete behavior of power converters to determine appropriate switching states by defining a cost function. The stability of the MPC algorithm is analyzed with the discrete z-domain response and the nonlinear simulation model. The results confirms that the control method of the active-front-end (AFE) rectifier is stable, and that is operates with an infinite gain margin and a very fast dynamic response. Moreover, the performance of the MPC controlled AFE rectifier is verified with a 3.0 kW experimental system. This shows that the MPC controlled AFE rectifier operates with a unity power factor, an acceptable THD (4.0 %) level for the input current and a very low DC voltage ripple. Finally, an efficiency comparison is performed between the MPC and the VOC-based PWM controllers for AFE rectifiers. This comparison demonstrates the effectiveness of the MPC controller.

강제전류 싸이크로콘버터에 의한 유도전동기 벡터제어 (Vector Control of an Induction Motor with Forced Commutated Cycloconverter)

  • Gi Taek Kim
    • 전자공학회논문지B
    • /
    • 제32B권9호
    • /
    • pp.1239-1246
    • /
    • 1995
  • A forced commutated cycloconverter (FCC) is a direct ac-ac converter capable of providing simultaneous voltage and frequency transformations. In this paper, vector control of an induction motor controlling stator current with forced commutated cycloconverter is presented. The advantage of current control is that the stator dynamics are eliminated and high performance vector control can be achieved. A novel modulation method based on dq transformation techniques is presented. Proposed modulation strategy generates the low frequency modulation function by the instantaneous value of the desired output voltages not by the steady state values of output magnitude and output frequency. PI control and predictive control algorithm for current control are applied, and the validity of proposed method is confirmed through digital simulations. Simulation results of step response and torque distubance and current control are presented.

  • PDF