• Title/Summary/Keyword: Predictive Hysteresis Control

Search Result 6, Processing Time 0.016 seconds

Novel Predictive Maximum Power Point Tracking Techniques for Photovoltaic Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Haruna, Junnosuke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.277-286
    • /
    • 2016
  • This paper offers two Maximum Power Point Tracking (MPPT) systems for Photovoltaic (PV) applications. The first MPPT method is based on a fixed frequency Model Predictive Control (MPC). The second MPPT technique is based on the Predictive Hysteresis Control (PHC). An experimental demonstration shows that the proposed techniques are fast, accurate and robust in tracking the maximum power under different environmental conditions. A DC/DC converter with a high voltage gain is obligatory to track PV applications at the maximum power and to boost a low voltage to a higher voltage level. For this purpose, a high gain Switched Inductor Quadratic Boost Converter (SIQBC) for PV applications is presented in this paper. The proposed converter has a higher gain than the other transformerless topologies in the literature. It is shown that at a high gain the proposed SIQBC has moderate efficiency.

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

A High Performance Current Control Stratege for a BLDC Motor (BLDC 전동기를 위한 고성능 전류 제어 기법)

  • Kim, Sang-Hoon;Kim, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.125-132
    • /
    • 2002
  • In this paper, a high performance current control strategy for a Brushless DC Motor is presented. The proposed strategy is based on the ramp comparison PI current control with the predictive voltage compensation. The proposed strategy is compared with the hysteresis current control strategy. The proposed method can improve the current waveforms, and it can reduce the torque ripples. So the proposed strategy is suitable to a high performance current control strategy for a Brushless DC Motor. The simulation and experimental results for a laboratory Brushless DC motor drive system confirm the validity of the proposed strategy.

  • PDF

Model Predictive Control for Induction Motor Drives Fed by a Matrix Converter (매트릭스 컨버터로 구동되는 유도전동기의 직접토크제어를 위한 모델예측제어 기반의 SVM 기법)

  • Choi, Woo Jin;Lee, Eunsil;Song, Joong-Ho;Lee, Young-Il;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.900-907
    • /
    • 2014
  • This paper proposes a MPC (Model Predictive Control) method for the torque and flux controls of induction motor. The proposed MPC method selects the optimized voltage vector for the matrix converter control using the predictive modeling equation of the induction motor and cost function. Hence, the reference voltage vector that minimizes the cost function of the torque and flux error within the control period is selected and applied to the actual system. As a result, it is possible to perform the torque and flux control of induction motor using only the MPC controller without a PI (Proportional-Integral) or hysteresis controller. Even though the proposed control algorithm is more complicated and has lots of computations compared with the conventional MPC, it can perform torque ripple reduction by synthesizing voltage vectors of various magnitude. This feature provides the reduction of amount of calculations and the improvement of the control performance through the adjustment of the number of the unit vectors n. The proposed control method is validated through the PSIM simulation.

A Novel Type of Discrete Time Predictive Current Controllers for Parallel Resonant Inverters (병렬 공진형 인버터에서 사용되는 새로운 형태의 이산시간 예측 전류 제어기)

  • Huh, Sung-Hoi;Choy, Ick;Kim, Kwon-Ho;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.309-311
    • /
    • 1996
  • In this paper, we propose two types of novel discrete time current control methods of modified fixed band hysteresis control and optimal control for Parallel Resonant DC Link Inverters(PRDCLI). Because zero bus voltage intervals are generated on the DC link of PRDCLI, we can obtain the information of counter electromotive force(emf) by a simple estimation strategy. The proposed current controllers predict the currents of the next resonant cycle using the obstained information of counter emf and the average values of DC link voltages. The computer simulation results for a simple equivalent circuit of induction motor show that the proposed control methods are more effective than conventional methods.

  • PDF

Control Characteristics of Current Controlled PWM Using Vector Control in VSI-IM Drive System (VSI-IM 구동 시스템에 벡터제어를 이용한 전류제어 PWM 방식의 제어특성)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.38-50
    • /
    • 1991
  • A current-controlled scheme of pulse width modulation voltage source inverter (PWM VSI) has attracted considerable attention due to its fast response with current limit and especially suitable for potentially high performance applications such as AC motor drives and UPS systems. These features yield near-sinusoidal currents in the load with reduced current peaks, lower inverter switching frequency and reduce inverter and load stresses. A high performance current-controlled inverter must have a quick response in transient state and low harmonic current in steady state. This paper compares and shows the controlled-characteristics with hysteresis controller(HC), ramp comparison controller(RCC) and predictive controller(PC) of PWM inverter to control actual current of VSI-IM.

  • PDF