• Title/Summary/Keyword: Prediction time

Search Result 5,939, Processing Time 0.032 seconds

Development & Evaluation of Real-time Ensemble Drought Prediction System (실시간 앙상블 가뭄전망정보 생산 체계 구축 및 평가)

  • Bae, Deg-Hyo;Ahn, Joong-Bae;Kim, Hyun-Kyung;Kim, Heon-Ae;Son, Kyung-Hwan;Cho, Se-Ra;Jung, Ui-Seok
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • The objective of this study is to develop and evaluate the system to produce the real-time ensemble drought prediction data. Ensemble drought prediction consists of 3 processes (meteorological outlook using the multi-initial conditions, hydrological analysis and drought index calculation) therefore, more processing time and data is required than that of single member. For ensemble drought prediction, data process time is optimized and hardware of existing system is upgraded. Ensemble drought data is estimated for year 2012 and to evaluate the accuracy of drought prediction data by using ROC (Relative Operating Characteristics) analysis. We obtained 5 ensembles as optimal number and predicted drought condition for every tenth day i.e. 5th, 15th and 25th of each month. The drought indices used are SPI (Standard Precipitation Index), SRI (Standard Runoff Index), SSI (Standard Soil moisture Index). Drought conditions were determined based on results obtained for each ensemble member. Overall the results showed higher accuracy using ensemble members as compared to single. The ROC score of SRI and SSI showed significant improvement in drought period however SPI was higher in the demise period. The proposed ensemble drought prediction system can be contributed to drought forecasting techniques in Korea.

A Study of Travel Time Prediction using K-Nearest Neighborhood Method (K 최대근접이웃 방법을 이용한 통행시간 예측에 대한 연구)

  • Lim, Sung-Han;Lee, Hyang-Mi;Park, Seong-Lyong;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.835-845
    • /
    • 2013
  • Travel-time is considered the most typical and preferred traffic information for intelligent transportation systems(ITS). This paper proposes a real-time travel-time prediction method for a national highway. In this paper, the K-nearest neighbor(KNN) method is used for travel time prediction. The KNN method (a nonparametric method) is appropriate for a real-time traffic management system because the method needs no additional assumptions or parameter calibration. The performances of various models are compared based on mean absolute percentage error(MAPE) and coefficient of variation(CV). In real application, the analysis of real traffic data collected from Korean national highways indicates that the proposed model outperforms other prediction models such as the historical average model and the Kalman filter model. It is expected to improve travel-time reliability by flexibly using travel-time from the proposed model with travel-time from the interval detectors.

Implementation of CNN-based water level prediction model for river flood prediction (하천 홍수 예측을 위한 CNN 기반의 수위 예측 모델 구현)

  • Cho, Minwoo;Kim, Sujin;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1471-1476
    • /
    • 2021
  • Flood damage can cause floods or tsunamis, which can result in enormous loss of life and property. In this regard, damage can be reduced by making a quick evacuation decision through flood prediction, and many studies are underway in this field to predict floods using time series data. In this paper, we propose a CNN-based time series prediction model. A CNN-based water level prediction model was implemented using the river level and precipitation, and the performance was confirmed by comparing it with the LSTM and GRU models, which are often used for time series prediction. In addition, by checking the performance difference according to the size of the input data, it was possible to find the points to be supplemented, and it was confirmed that better performance than LSTM and GRU could be obtained. Through this, it is thought that it can be utilized as an initial study for flood prediction.

A Real-Time Data Mining for Stream Data Sets (연속발생 데이터를 위한 실시간 데이터 마이닝 기법)

  • Kim Jinhwa;Min Jin Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.41-60
    • /
    • 2004
  • A stream data is a data set that is accumulated to the data storage from a data source over time continuously. The size of this data set, in many cases. becomes increasingly large over time. To mine information from this massive data. it takes much resource such as storage, memory and time. These unique characteristics of the stream data make it difficult and expensive to use this large size data accumulated over time. Otherwise. if we use only recent or part of a whole data to mine information or pattern. there can be loss of information. which may be useful. To avoid this problem. we suggest a method that efficiently accumulates information. in the form of rule sets. over time. It takes much smaller storage compared to traditional mining methods. These accumulated rule sets are used as prediction models in the future. Based on theories of ensemble approaches. combination of many prediction models. in the form of systematically merged rule sets in this study. is better than one prediction model in performance. This study uses a customer data set that predicts buying power of customers based on their information. This study tests the performance of the suggested method with the data set alone with general prediction methods and compares performances of them.

The Prediction of Chaos Time Series Utilizing Inclined Vector (기울기백터를 이용한 카오스 시계열에 대한 예측)

  • Weon, Sek-Jun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.421-428
    • /
    • 2002
  • The local prediction method utilizing embedding vector loses the prediction power when the parameter r estimation is not exact for predicting the chaos time series induced from the high order differential equation. In spite of the fact that there have been a lot of suggestions regarding how to estimate the delay time ($\tau$), no specific method is proposed to apply to any time series. The inclinded linear model, which utilizes inclinded netter, yields satisfying degree of prediction power without estimating exact delay time ($\tau$). The usefulness of this approach has been indicated not only theoretically but also in practical situation when the method w8s applied to economical time series analysis.

A Study on the Prediction of Paint Dry Time at Ship Block's Inner Wall Placed in the Paint Dry Facility Adopting the Hot Air Supply System (열풍 공급 방식의 도장 건조 설비에서 선체 블록 도장 건조 시간 예측에 관한 연구)

  • Song, Yoo-Sok;Seol, Sin-Su;Yoon, Kwang-Won;Yang, Moon-Sik;Jeong, Jae-Hwan;Yoon, Hyun-Sik
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.75-81
    • /
    • 2011
  • An indirect concept and method is proposed to predict the paint dry time at the inside wall of ship block. To implement this concept on computer program, optimal hot air supply-exhaust system of paint dry facility was designed by CFD simulation and experiment was performed to get the paint dry time curve according to various paint dry conditions. After combining the block inside environment from the simulation results and the paint dry time prediction curve from the curve-fitting of experimental result, the GUI program which can be executed in general PC OS has been finally developed.

  • PDF

The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network (엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석)

  • Lee, Chang-Yong;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

Hierarchical optimisation for large scale discrete-time systems using extended interaction prediction method (확장된 상호작용 예측방법을 이용한 대규모 이산시간 시스템의 계층적 최적제어)

  • 정희태;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.223-227
    • /
    • 1987
  • This paper presents the extended interaction prediction method for large scale discrete-time systems with interconnected state and control. Feedback gain is obtained from decentralized calculation without solving Riccati equation. Hence, Computer storage and calculation time is reduced.

  • PDF

Analysis of low level cloud prediction in the KMA Local Data Assimilation and Prediction System(LDAPS) (기상청 국지예보모델의 저고도 구름 예측 분석)

  • Ahn, Yongjun;Jang, Jiwon;Kim, Ki-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.124-129
    • /
    • 2017
  • Clouds are an important factor in aircraft flight. In particular, a significant impact on small aircraft flying at low altitude. Therefore, we have verified and characterized the low level cloud prediction data of the Unified Model(UM) - based Local Data Assimilation and Prediction System(LDAPS) operated by KMA in order to develop cloud forecasting service and contents important for safety of low-altitude aircraft flight. As a result of the low level cloud test for seven airports in Korea, a high correlation coefficient of 0.4 ~ 0.7 was obtained for 0-36 leading time. Also, we found that the prediction performance does not decrease as the lead time increases. Based on the results of this study, it is expected that model-based forecasting data for low-altitude aviation meteorology services can be produced.

A Nonparametric Prediction Model of District Heating Demand (비모수 지역난방 수요예측모형)

  • Park, Joo Heon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.3
    • /
    • pp.447-463
    • /
    • 2002
  • The heat demand prediction is an essential issue in management of district heating system. Without an accurate prediction through the lead-time period, it might be impossible to make a rational decision on many issues such as heat production scheduling and heat exchange among the plants which are very critical for the district heating company. The heat demand varies with the temperature as well as the time nonlinearly. And the parametric specification of the heat demand model would cause a misspecification bias in prediction. A nonparametric model for the short-term heat demand prediction has been developed as an alternative to avoiding the misspecification error and tested with the actual data. The prediction errors are reasonably small enough to use the model to predict a few hour ahead heat demand.

  • PDF