• 제목/요약/키워드: Prediction risk

검색결과 1,085건 처리시간 0.025초

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

GeoAI-Based Forest Fire Susceptibility Assessment with Integration of Forest and Soil Digital Map Data

  • Kounghoon Nam;Jong-Tae Kim;Chang-Ju Lee;Gyo-Cheol Jeong
    • 지질공학
    • /
    • 제34권1호
    • /
    • pp.107-115
    • /
    • 2024
  • This study assesses forest fire susceptibility in Gangwon-do, South Korea, which hosts the largest forested area in the nation and constitutes ~21% of the country's forested land. With 81% of its terrain forested, Gangwon-do is particularly susceptible to wildfires, as evidenced by the fact that seven out of the ten most extensive wildfires in Korea have occurred in this region, with significant ecological and economic implications. Here, we analyze 480 historical wildfire occurrences in Gangwon-do between 2003 and 2019 using 17 predictor variables of wildfire occurrence. We utilized three machine learning algorithms—random forest, logistic regression, and support vector machine—to construct wildfire susceptibility prediction models and identify the best-performing model for Gangwon-do. Forest and soil map data were integrated as important indicators of wildfire susceptibility and enhanced the precision of the three models in identifying areas at high risk of wildfires. Of the three models examined, the random forest model showed the best predictive performance, with an area-under-the-curve value of 0.936. The findings of this study, especially the maps generated by the models, are expected to offer important guidance to local governments in formulating effective management and conservation strategies. These strategies aim to ensure the sustainable preservation of forest resources and to enhance the well-being of communities situated in areas adjacent to forests. Furthermore, the outcomes of this study are anticipated to contribute to the safeguarding of forest resources and biodiversity and to the development of comprehensive plans for forest resource protection, biodiversity conservation, and environmental management.

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

보건의료계열 다직종 연계 교육프로그램의 효과 (Effect of interprofessional education programs in Healthcare)

  • 박정희;김현일;이미향
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.81-87
    • /
    • 2024
  • 이 연구는 보건의료계열 3학년 재학생을 대상으로 환자안전 중심의 서비스를 제공하고 전문성을 발휘할 수 있도록 IPE 프로그램을 개발하고 5일간 프로그램을 적용하여 환자안전에 대한 지식과 환자안전 수행자신감에 미치는 효과를 확인하기 위해 시도되었다. 주된 내용으로는 직종별 직무 역할 이해, 환자위험 예지 훈련, 시나리오 기반 환자경험, 개선전략 도출 등이었다. 연구 결과 IPE 프로그램 적용 후 환자안전지식은 39점에서 37점으로 통계적으로 유의하게 낮아졌다(p=.007). 환자안전 수행자신감이 6.71점에서 7.50점으로 통계적으로 유의하게 높아졌다(p<.001). 또한 임상실습을 경험한 학생이 IPE 프로그램 적용 후 환자안전 지식이 더 높았으나 환자안전 수행 자신감은 유의한 차이가 없었다. IPE 프로그램의 효과성을 입증할 수 있도록 반복연구를 제언하며 IPE 프로그램의 확대운영과 지속적으로 관리될 수 있는 구체적인 방안을 모색해야 할 것이다.

Predictive modeling algorithms for liver metastasis in colorectal cancer: A systematic review of the current literature

  • Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
    • 한국간담췌외과학회지
    • /
    • 제28권1호
    • /
    • pp.14-24
    • /
    • 2024
  • This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.

딥러닝 기반 낙상 감지 시스템의 구성과 적용 (Configuration and Application of a deep learning-based fall detection system)

  • 우종석;리오넬;정상중;정완영
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.213-220
    • /
    • 2023
  • 낙상은 일상의 활동 중에 예기치 않게 발생하여 생활에 많은 어려움을 초래한다. 본 연구는 고위험 직종 종사자들의 낙상 감지를 위한 시스템을 구성하고 자료를 수집하여 예측 모델에 적용함으로써 그 유효성을 검증하는 것을 목적으로 하였다. 이를 위해 가속도센서와 자이로센서를 통해 가속도 신호와 방위각을 산출하여 낙상 여부를 감지하는 웨어러블 기기를 구성하였다. 그리고 연구 참여자들이 이 기기를 복부에 착용하고 정해진 활동을 수행하는 과정에서 낙상과 관련한 동작으로부터 필요한 데이터를 측정하고 기기 내에 존재하는 블루투스 장치를 통해 컴퓨터로 전송하였다. 이렇게 수집된 데이터를 필터링 등을 통해 처리하여 딥러닝 알고리즘들인 1D CNN, LSTM, CNN-LSTM에 근거한 낙상 감지 예측 모델들에 적용하고 그 결과를 평가하였다.

보건의료계열 대상 다직종연계교육프로그램이 환자안전지식, 환자안전관리에 대한 태도 및 환자안전수행 자신감에 미치는 영향 (The Effects of Interprofessional Education Programs for Healthcare Students on Patient Safety Knowledge, Attitudes toward Patient Safety Management and Confidence in Patient Safety Performance )

  • 박정희;황수정;이미향
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.459-464
    • /
    • 2024
  • 본 연구는 임상실습경험이 있는 3,4학년 보건의료계열학생들을 대상으로 다직종연계교육프로그램을 운영한 후 환자안전지식, 환자안전수행자신감 및 환자안전에 대한 태도에 미치는 효과를 파악하기 위함이다. 다직종연계교육프로그램은 6일간 운영되었으며 직무이해, 환자안전위험예지훈련, 시나리오 기반 환자안전 경험 등으로 구성되어 있다. 다직종연계교육프로그램 적용 후 환자안전지식(t=-5.01, p<.001), 환자안전수행자신감(t=-6.75, p<.001), 환자안전에 대한 태도(t=-2.59, p=.013)가 통계적으로 유의하게 증가하였다. 본 연구결과를 토대로 다직종연계교육프로그램에 대한 교육주제를 다양화하여 프로그램을 개발 및 그 효과성을 평가하는 것이 필요하다. 또한 대학생 뿐만 아니라 의료기관에 근무하는 신입직원들을 대상으로 확대 운영하는 것이 필요하다.

빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단 (Animal Infectious Diseases Prevention through Big Data and Deep Learning)

  • 김성현;최준기;김재석;장아름;이재호;차경진;이상원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • 조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.

말기 암 환자에서 임상변수를 이용한 생존 기간 예측 (Prediction of Life Expectancy for Terminally Ill Cancer Patients Based on Clinical Parameters)

  • 염창환;최윤선;홍영선;박용규;이혜리
    • Journal of Hospice and Palliative Care
    • /
    • 제5권2호
    • /
    • pp.111-124
    • /
    • 2002
  • 목적 : 의학의 발달로 인간의 생존 기간이 길어졌지만, 암 발생율과 사망율은 오히려 증가하고 있어 그로 인해 말기 암 환자는 계속 늘어나고 있는 실정이다. 말기 암 환자를 진료하는 데 있어서 환자의 생존 기간을 예측하는 것은 중요한 문제로 만약 환자의 생존 기간을 예측할 수 있다면 남은 시간에 따라 환자, 가족, 의료진은 치료의 선택에 큰 차이를 보일 것이다. 이에 저자 등은 말기 암 환자에서 사망 위험도를 높이는 예후 인자를 알아내고 이들 예후 인자의 개수에 따른 생존 기간을 예측하여 말기 암 환자의 진료에 도움이 되고자 하였다. 방법 : 2000년 7월 1일부터 2001년 8월 31일 사이에 국민건강보험공단 일산병원 가정의학과에 말기 암으로 입원한 환자 157명을 대상으로 입원당시 환자의 임상변수 31가지를 조사하였다. 그리고 환자의 의무기록과 조사된 환자의 신상기록을 가지고 2001년 10월 31일까지의 환자의 생존 여부를 확인하였다. Kaplan-Meier 방법과 로그순위 검정(log-rank test)을 이용하여 임상변수에 따른 생존 기간에 차이가 있는지를 알아보았다. Cox의 비례위험함수 모형(Cox's proportional hazard model)을 이용하여 임상변수 중 사망 위험도를 높이는 유의한 변수를 얻은 후 이를 예후 인자로 삼고, 이것을 와이블 비례위험함수 모형(Weibull proportional hazard function model)을 이용하여 예후 인자들의 유무에 따른 생존 기간의 평균, 중앙값 제 1사분위수 그리고 제 3사분위수를 계산하여 생존기간을 예측하였다. 결과 : 말기 암 환자 157명 중 성별은 남자가 79명(50.3%), 여자가 78명(49.7%)이었고, 평균 연령은 남자가 $65.1{\pm}13.0$세, 여자는 $64.3{\pm}13.7$세였다. 암의 종류를 보면 위암이 36명(22.9%)으로 제일 많았고, 폐암이 27명(17.2%), 대장암이 20명(12.7%) 순이었다. 의식변화, 식욕부진, 저혈압, 수행능력 저하, 백혈구 증가증, 중성구 증가증, 크레아티닌 증가, 저알부민혈증, 고빌리루빈혈증, 간효소(SGPT)치 증가, 프로트롬빈 시간(PT) 연장, 활성부분 트롬보플라스틴 시간(aPTT) 연장, 저나트륨혈증, 고칼륨혈증 등을 보이는 환자는 통계학적으로 유의하게 생존 기간이 짧았다. 이중 Cox의 비례위험함수 모형을 통해 수행능력 저하, 중성구 증가증, PT 연장, aPTT 연장인 경우가 환자의 사망위험도를 높이는 유의한 예후 인자로 나왔다. 생존 기간의 중앙값은 4가지 인자가 모두 있는 경우는 3.0일, 3가지만 있는 경우는 $5.7{\sim}8.2$일, 2가지만 있는 경우는 $11.4{\sim}20.0$일, 1가지만 있는 경우는 $27.9{\sim}40.0$일, 4가지 모두 없는 경우는 77일로 나왔다. 결론 : 말기 암 환자에서 수행능력 저하, 중성구 증가증, PT 연장, aPTT 연장이 사망위험도를 높이는 예후 인자임을 알 수 있었다. 이들 4개 인자를 통해 말기 암 환자에서 생존 기간을 예측할 수 있을 것으로 사료된다.

  • PDF

국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거 (A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence)

  • 임현욱;정승환;이희수;오경주
    • 지식경영연구
    • /
    • 제22권4호
    • /
    • pp.71-85
    • /
    • 2021
  • 본 연구는 채권시장과 금리시장의 지표를 이용한 외환시장 환율예측 모델을 만드는데 있어 어떤 인공지능 방법론이 가장 적합한지 밝혀내는데 그 목적이 있다. 채권시장의 대표 상품인 국고채와 통안채는 위험회피 상황이 올 때 대규모로 매도되어지고 그런 경우 환율이 상승하는 모습을 자주 보여주었고, 금리시장에서 통화 스왑 (Cross Currency Swap) 가격은 달러 유동성 문제가 생길 때 주로 하락하였으며, 그 움직임은 환율의 상승에 직간접적인 영향을 미쳐온 점 등을 고려하면, 채권시장과 금리시장에서 거래되는 상품의 가격과 움직임은 외환시장에도 직간접적인 영향을 주고 있으며, 세 시장 사이엔 상호 유기적이고 보완적인 관계가 있다고 볼 수 있다. 지금까지 채권시장, 금리시장, 그리고 외환시장 사이의 관계와 연관성을 밝히는 연구는 있어왔으나, 과거 많은 환율예측 연구들이 주로 GDP, 경상수지 흑자/적자, 인플레이션 등 거시적인 지표를 기반으로 한 연구에 집중되어 왔으며, 채권시장과 금리시장 지표를 기반으로 인공지능을 활용하여 외환시장의 환율을 예측하는 적극적인 연구는 아직 진행되지 않았다. 본 연구는 채권시장 지표와 금리시장 지표를 기반으로, 비선형데이터 분석에 적합한 인공신경망(Artificial Neural Network) 모델과, 선형데이터 분석에 적합한 로지스틱 회귀분석 (Logistic regression), 그리고 비선형/선형데이터 분석에 활용 가능한 의사결정나무 (Decision Tree)를 각각 사용하여 환율예측 모델을 만들고 그 수익률을 비교하여 어떤 모델이 가장 외환시장 환율 예측을 하는데 적합한지 알려준다. 또한, 본 연구는 주식시장, 금리시장, 오일시장, 그리고 외환시장 환율 등 비선형적 시계열 데이터 분석에 많이 사용되어진 인공신경망 모델이 채권시장과 금리시장 지표를 기반으로 한 외환시장 환율예측 모델에 가장 적합한 방법론을 제공하고 있다는 것을 증명한다. 채권시장, 금리시장, 그리고 외환시장 간의 단순한 연관성을 밝히는 것을 넘어, 세 시장 간의 거래 신호를 포착하여 적극적인 상관관계를 밝히고 상호 유기적인 움직임을 증명하는 것은 단순히 외환시장 트레이더 들에게 새로운 트레이딩 모델을 제시하는 것뿐만 아니라 금융시장 전체의 효율성을 증가시키는데 기여할 것이라 기대한다.