• 제목/요약/키워드: Prediction risk

검색결과 1,085건 처리시간 0.025초

슬레드 모델 시뮬레이션을 이용한 자동차 정면충돌에서 차량 형태별 운전자 상해 판정식 제작 (Construction of Driver's Injury Risk Prediction in Different Car Type by Using Sled Model Simulation at Frontal Crash)

  • 문준희;최형연
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.136-144
    • /
    • 2013
  • An extensive real world in-depth crash accident data is needed to make a precise occupant injury risk prediction at crash accidents which might be a critical information from the scene of the accident in ACNS(Automatic Crash Notification System). However it is rather unfortunate that there is no such a domestic database unlike other leading countries. Therefore we propose a numerical method, i.e., crash simulation using a sled model to make a virtual database that can substitute car crash database in real world. The proposing crash injury risk prediction is validated against a limited domestic crash accident data.

Preventive and Risk Reduction Strategies for Women at High Risk of Developing Breast Cancer: a Review

  • Krishnamurthy, Arvind;Soundara, Viveka;Ramshankar, Vijayalakshmi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.895-904
    • /
    • 2016
  • Breast cancer is the most commonly diagnosed invasive cancer among women. Many factors, both genetic and non-genetic, determine a woman's risk of developing breast cancer and several breast cancer risk prediction models have been proposed. It is vitally important to risk stratify patients as there are now effective preventive strategies available. All women need to be counseled regarding healthy lifestyle recommendations to decrease breast cancer risk. As such, management of these women requires healthcare professionals to be familiar with additional risk factors so that timely recommendations can be made on surveillance/risk-reducing strategies. Breast cancer risk reduction strategies can be better understood by encouraging the women at risk to participate in clinical trials to test new strategies for decreasing the risk. This article reviews the advances in the identification of women at high risk of developing breast cancer and also reviews the strategies available for breast cancer prevention.

A Risk Prediction Model for Operative Mortality after Heart Valve Surgery in a Korean Cohort

  • Kim, Ho Jin;Kim, Joon Bum;Kim, Seon-Ok;Yun, Sung-Cheol;Lee, Sak;Lim, Cheong;Choi, Jae Woong;Hwang, Ho Young;Kim, Kyung Hwan;Lee, Seung Hyun;Yoo, Jae Suk;Sung, Kiick;Je, Hyung Gon;Hong, Soon Chang;Kim, Yun Jung;Kim, Sung-Hyun;Chang, Byung-Chul
    • Journal of Chest Surgery
    • /
    • 제54권2호
    • /
    • pp.88-98
    • /
    • 2021
  • Background: This study aimed to develop a new risk prediction model for operative mortality in a Korean cohort undergoing heart valve surgery using the Korea Heart Valve Surgery Registry (KHVSR) database. Methods: We analyzed data from 4,742 patients registered in the KHVSR who underwent heart valve surgery at 9 institutions between 2017 and 2018. A risk prediction model was developed for operative mortality, defined as death within 30 days after surgery or during the same hospitalization. A statistical model was generated with a scoring system by multiple logistic regression analyses. The performance of the model was evaluated by its discrimination and calibration abilities. Results: Operative mortality occurred in 142 patients. The final regression models identified 13 risk variables. The risk prediction model showed good discrimination, with a c-statistic of 0.805 and calibration with Hosmer-Lemeshow goodness-of-fit p-value of 0.630. The risk scores ranged from -1 to 15, and were associated with an increase in predicted mortality. The predicted mortality across the risk scores ranged from 0.3% to 80.6%. Conclusion: This risk prediction model using a scoring system specific to heart valve surgery was developed from the KHVSR database. The risk prediction model showed that operative mortality could be predicted well in a Korean cohort.

Collapse risk evaluation method on Bayesian network prediction model and engineering application

  • WANG, Jing;LI, Shucai;LI, Liping;SHI, Shaoshuai;XU, Zhenhao;LIN, Peng
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.121-131
    • /
    • 2017
  • Collapse was one of the typical common geological hazards during the construction of tunnels. The risk assessment of collapse was an effective way to ensure the safety of tunnels. We established a prediction model of collapse based on Bayesian Network. 76 large or medium collapses in China were analyzed. The variable set and range of the model were determined according to the statistics. A collapse prediction software was developed and its veracity was also evaluated. At last the software was used to predict tunnel collapses. It effectively evaded the disaster. Establishing the platform can be subsequent perfect. The platform can also be applied to the risk assessment of other tunnel engineering.

Risk factors for anticoagulant-associated gastrointestinal hemorrhage: a systematic review and meta-analysis

  • Fuxin Ma;Shuyi Wu;Shiqi Li;Zhiwei Zeng;Jinhua Zhang
    • The Korean journal of internal medicine
    • /
    • 제39권1호
    • /
    • pp.77-85
    • /
    • 2024
  • Background/Aims: There may be many predictors of anticoagulation-related gastrointestinal bleeding (GIB), but until now, systematic reviews and assessments of the certainty of the evidence have not been published. We conducted a systematic review to identify all risk factors for anticoagulant-associated GIB to inform risk prediction in the management of anticoagulation-related GIB. Methods: A systematic review and meta-analysis were conducted to search PubMed, EMBASE, Web of Science, and Cochrane Library databases (from inception through January 21, 2022) using the following search terms: anticoagulants, heparin, warfarin, dabigatran, rivaroxaban, apixaban, DOACs, gastrointestinal hemorrhage, risk factors. According to inclusion and exclusion criteria, studies of risk factors for anticoagulation-related GIB were identified. Risk factors for anticoagulant-associated GIB were used as the outcome index of this review. Results: We included 34 studies in our analysis. For anticoagulant-associated GIB, moderate-certainty evidence showed a probable association with older age, kidney disease, concomitant use of aspirin, concomitant use of the antiplatelet agent, heart failure, myocardial infarction, hematochezia, renal failure, coronary artery disease, helicobacter pylori infection, social risk factors, alcohol use, smoking, anemia, history of sleep apnea, chronic obstructive pulmonary disease, international normalized ratio (INR), obesity et al. Some of these factors are not included in current GIB risk prediction models. such as anemia, co-administration of gemfibrozil, co-administration of verapamil or diltiazem, INR, heart failure, myocardial infarction, etc. Conclusions: The study found that anemia, co-administration of gemfibrozil, co-administration of verapamil or diltiazem, INR, heart failure, myocardial infarction et al. were associated with anticoagulation-related GIB, and these factors were not in the existing prediction models. This study informs risk prediction for anticoagulant-associated GIB, it also informs guidelines for GIB prevention and future research.

Model Selection for Tree-Structured Regression

  • Kim, Sung-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제25권1호
    • /
    • pp.1-24
    • /
    • 1996
  • In selecting a final tree, Breiman, Friedman, Olshen, and Stone(1984) compare the prediction risks of a pair of tree, where one contains the other, using the standard error of the prediction risk of the larger one. This paper proposes an approach to selection of a final tree by using the standard error of the difference of the prediction risks between a pair of trees rather than the standard error of the larger one. This approach is compared with CART's for simulated data from a simple regression model. Asymptotic results of the approaches are also derived and compared to each other. Both the asymptotic and the simulation results indicate that final trees by CART tend to be smaller than desired.

  • PDF

석면 해체 작업의 위험성평가모델 비교 분석 (A Comparative Analysis of Risk Assessment Models for Asbestos Demolition)

  • 김동규;김민승;이수민;김유진;한승우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.99-100
    • /
    • 2022
  • As the danger of exposure to the asbestos has been revealed, the importance of demolition asbestos in existing buildings has been raised. Extensive body of study has been conducted to evaluate the risk of demolition asbestos, but there were confined types of variables caused by not reflecting categorical information and limitations in collecting quantitative information. Thus, this study aims to derive a model that predicts the risk in workplace of demolition asbestos by collecting categorical and continuous variables. For this purpose, categorical and continuous variables were collected from asbestos demolition reports, and the risk assessment score was set as the dependent variable. In this study, the influence of each variable was identified using logistic regression, and the risk prediction model methodologies were compared through decision tree regression and artificial neural network. As a result, a conditional risk prediction model was derived to evaluate the risk of demolition asbestos, and this model is expected to be used to ensure the safety of asbestos demolition workers.

  • PDF

퍼지기법을 이용한 상수관로의 노후도예측 모델 연구 (Deterioration Prediction Model of Water Pipes Using Fuzzy Techniques)

  • 최태호;최민아;이현동;구자용
    • 상하수도학회지
    • /
    • 제30권2호
    • /
    • pp.155-165
    • /
    • 2016
  • Pipe Deterioration Prediction (PDP) and Pipe Failure Risk Prediction (PFRP) models were developed in an attempt to predict the deterioration and failure risk in water mains using fuzzy technique and the markov process. These two models were used to determine the priority in repair and replacement, by predicting the deterioration degree, deterioration rate, failure possibility and remaining life in a study sample comprising 32 water mains. From an analysis approach based on conservative risk with a medium policy risk, the remaining life for 30 of the 32 water mains was less than 5 years for 2 mains (7%), 5-10 years for 8 (27%), 10-15 years for 7 (23%), 15-20 years for 5 (17%), 20-25 years for 5 (17%), and 25 years or more for 2 (7%).

Two dimensional reduction technique of Support Vector Machines for Bankruptcy Prediction

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Lee, Ki-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.608-613
    • /
    • 2007
  • Prediction of corporate bankruptcies has long been an important topic and has been studied extensively in the finance and management literature because it is an essential basis for the risk management of financial institutions. Recently, support vector machines (SVMs) are becoming popular as a tool for bankruptcy prediction because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. In addition, they don't require huge training samples and have little possibility of overfitting. However. in order to Use SVM, a user should determine several factors such as the parameters ofa kernel function, appropriate feature subset, and proper instance subset by heuristics, which hinders accurate prediction results when using SVM In this study, we propose a novel hybrid SVM classifier with simultaneous optimization of feature subsets, instance subsets, and kernel parameters. This study introduces genetic algorithms (GAs) to optimize the feature selection, instance selection, and kernel parameters simultaneously. Our study applies the proposed model to the real-world case for bankruptcy prediction. Experimental results show that the prediction accuracy of conventional SVM may be improved significantly by using our model.

  • PDF

A framework of Multi Linear Regression based on Fuzzy Theory and Situation Awareness and its application to Beach Risk Assessment

  • Shin, Gun-Yoon;Hong, Sung-Sam;Kim, Dong-Wook;Hwang, Cheol-Hun;Han, Myung-Mook;Kim, Hwayoung;Kim, Young jae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3039-3056
    • /
    • 2020
  • Beaches have many risk factors that cause various accidents, such as drifting and drowning, these accidents have many risk factors. To analyze them, in this paper, we identify beach risk factors, and define the criteria and correlation for each risk factor. Then, we generate new risk factors based on Fuzzy theory, and define Situation Awareness for each time. Finally, we propose a beach risk assessment and prediction model based on linear regression using the calculated risk result and pre-defined risk factors. We use national public data of the Korea Meteorological Administration (KMA), and the Korea Hydrographic and Oceanographic Agency (KHOA). The results of the experiment showed the prediction accuracy of beach risk to be 0.90%, and the prediction accuracy of drifting and drowning accidents to be 0.89% and 0.86%, respectively. Also, through factor correlation analysis and risk factor assessment, the influence of each of the factors on beach risk can be confirmed. In conclusion, we confirmed that our proposed model can assess and predict beach risks.