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In selecting a final tree, Breiman, Friedman, Olshen, and Stone
(1984) compare the prediction risks of a pair of tree, where one con-
tains the other, using the standard error of the prediction risk of the
larger one. This paper proposes an approach to selection of a final tree
by using the standard error of the difference of the prediction risks
between a pair of trees rather than the standard error of the larger
one. This approach is compared with CART’s for simulated data from
a simple regression model. Asymptotic results of the approaches are
also derived and compared to each other. Both the asymptotic and
the simulation results indicate that final trees by CART tend to be
smaller than desired.
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1. INTRODUCTION

Tree-structured regression (TSR) is a non-linear sequential regression sch-
eme where regressor variables are involved one after another, each being se-
lected, based on a part of data which is determined by the previously selected
regressor variables, so that the prediction risk may be minimized. In a regular
regression, we add a regressor variable when the whole data suggests that it
may improve predictions most among the yet unselected regressor variables.
On the other hand, once a regressor variable is selected in TSR, the sub-
sequent selection is based on a part of the whole data set that corresponds
to the outcome of the previously selected variables. The sequential selection
scheme can be depicted in a tree-like graph. We call such a graph a tree.

The use of trees in regression analysis dates back to the Automatic Inter-
action Detection program (AID) developed by Morgan and Sonquist (1963),
which was followed by the classification program THAID, developed by Mor-
gan and Messenger (1973). Breiman, Friedman, Olshen, and Stone (1984)
proposed an algorithm, which they called Classification And Regression Trees
(CART), that is designed as a sequential decision aid for classification or re-
gression problems. Loh and Vanichsetakul (1988) proposed an algorithm
called Fast Algorithm for Classification Trees (FACT) which involves recur-
sive application of linear discriminant analysis, with the regressor variables at
each stage being appropriately chosen according to the data and the type of
splits desired. These four tree algorithms are primarily for prediction prob-
lems.

AID, THAID and FACT build trees by adding nodes (variables) until a
certain condition holds. CART Dbuilds trees in two steps. First, a tree is
grown beyond the optimal tree-size, and then an optimal tree is chosen by
pruning the grown-up tree. In gencral terms, CART uses a loss function in
the growing process, which ends when the expected loss no longer decreases.
It then estimates the prediction risks by the subtrees of the grown-up tree
by the cross-validation or the test-set method and selects the subtree with
the minimum prediction risk. In the estimation by cross-validation, CART
uses as a criterion a liear combination of the loss function and the tree-size,
to control the tree-size for the cross-validation subsets of data. Breiman et
al. (1984) developed theories concerning the search of optimal trees using the
criterion, and Kim (1994) extended the theory so that the observation cost
may be considered in addition to the loss function and the tree-size.
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One of the advantages of the tree-structured approach is that the tree
procedure output gives easily understood and interpreted information regard-
ing the predictive structure of the data. The tree procedure output, almost
universally, provides an illuminating and natural way of understanding the
structure of the problem (Breiman et al. (1984), p. 58). However, exten-
sive exploration and careful interpretation are necessary to arrive at sound

conclusion (Einhorn (1972), Doyle (1973), Breiman et al. (1984)).

Two key issues relevant to sound interpretation are instability and selec-
tion of the final tree. Instability issue is discussed in Breiman et al. (1984,
pp. 156-160). The selection rule of the final tree by CART is described in
subsection 3.4.3 and section 11.6 of Breiman et al. (1984). CART’s selec-
tion rule of the final tree can be improved in the following sense. Suppose
we have data from a simple linear regression model. We test significance of
the regression model by testing whether the regression coefficient is zero or
not, which is equivalent to testing whether the prediction risk or the mean
squared error decreases by the simple regression model. We see an analogy
in CART that it compares prediction risks between a pair of regression trees
where one is a submodel of the other. But a distinction between the regular
regression and the tree-structured regression by CART is that CART does
not use a standardized form of the difference of the prediction risks between
the optimal tree and any of its subtrees or an F-like statistic as we do in
comparing a regular regression model and its reduced one. Actually, Loh and
Vanichsetakul (1988) use F-statistics for splitting and stopping rules. CART
uses the standard error (call it se;) of the estimate of the prediction risk
of the optimal tree in comparing prediction risks. It is desirable to use the
standard error (call it ses) of the difference between the two prediction risks.
se; and sep are not equal to each other in general, and so the two standard
errors may end up with different regression trees.

In this paper we will derive an asymptotic formula for the statistic that
is proposed for selecting final trees and that for the statistic that is used in
CART. We will then use simulated data to demonstrate differences between
the proposed and CART’s approaches. It is shown that CART’s approach
would often produce smaller trees than desired.

This paper consists of four sections and two appendices. Section 2 in-
troduces notations, section 3 presents the main result of this paper, deriving
the asymptotic property of the statistic which is proposed to be used for final
tree selection, and section 4 concludes the paper. Appendix 1 proves the main



4 Sung-Ho Kim

theorem in section 3 and Appendix 2 contains a table that is referred to in
section 3.

2. NOTATION

In this paper only one variable, if any, is used to split data at a node. We
denote the decision rules before and after split by do(-) and d; (-), respectively.
To estimate the accuracy of the predictions by a decision rule, we will use a
test set method. In a test set method, we divide the whole data set into two
parts; one part being used for the construction of decision rules, the other for
the test of the decision rules or the estimation of some parameters involved.
The former part is called the learning or training (data) set, the latter the test
(data) set. The size of the learning set is denoted by Ny, and by N; = N — N,
for the test set.

We consider a data set, {(X;,Y;)}Y,, from a simple regression model

Y =BX +e, (2.1)

where € ~ N (0,02), and ¢ is independent of X. This model will be assumed
throughout this paper.
We will use a squared error loss as given by

L(Y;,d(X))) = (V; — d(X2))?,

where d(-) stands for a decision rule. In a test set method, the expected loss
of the prediction by d(-) is estimated by

=" L(Y:,d(X:))/N, (2.2)

i€n

where 7 is the index set of the elements of the test set.

3. MAIN RESULT AND DISCUSSION

The method to split data is described in detail in Breiman et al. (1984).
We split data so that the prediction risk, as estimated based on the learn-
ing set, may decrease most among all the possible splits when we observe a
selected regressor variable.
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We denote the sample variance of L (Y3, do(X;))—L(Yi, d1(X)) by V(L (do)—
L(d;)) and the sample variance of L(Y;,d1(X;)) by V(L(dy)). Let

R(do) — R(d1)
VV (L(do) — L(d1))

IR, = (R(do) — R(d1))//V (L(d1))- (3.2)

The test set is split into two subsets according to the value of X. If the
value of X is smaller than a certain value, the corresponding case is classified
into one subset, otherwise into the other. We will call the former subset
the left subset, and the latter the right subset. The terms left and right
are from the left and the right child nodes in a tree. We will denote by =,
the probability that a case falls into the left subset and by =5 for the right
subset. Let ¢>(\'f ) denote the ath central moment of X and X, and Xy the
random variables for X of the caceq that fall into the left subset and the right
subset, respectively. Let px and 0'\, denote the mean and the variance of the
subscript variable X, respectively.

It does seem difficult to explore the distributions of IR and IRy theo-
retically. We will instead explore the stochastic limits of IR; and IR,;; and
compare the performances IR, and IRy, via simulation. The formulae of the
stochastic limits are given in Theorems 3.1 and 3.2 below.

IRdif - (31)

and

Theorem 3.1 Assume that the 4th moment of X is bounded. Suppose that

6 < —Q < 6y, for some 0 < 8; < 6 < 0. Then, if Vy;s in expression (3.3) is

~1/2

posmve, IR, converges in probability at the rate of N, to

2 _ 2
Kdif _ 'R‘L WRﬂ (ﬂ‘);g I‘I’XL ) : (3'3)
dif

as N; — oo, where
- 3
Viig = ﬂ4{ ¢(4) (o X~ (U?\')z) — 4 mr(Bx, '_,UXL)(¢(3) ¢( ))}
+48%2 (0% — %),
where, for a non-negative integer a,

69 = 1,68 + 7o) (3.4)
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and

Proof. See Appendix 1.
Both the numerator and the denominator in the right hand side of (3.3)
are multiples of 3. But we will keep the formula in (3.3) as it is, where V,;;

is the stochastic limit of V(L (do) — L(d})).

Theorem 3.2 Under the same condition as in Theorem 3.1, IR; converges

at the rate of Ny Y 2 in probability to

mmrB (bx, — Bx,)>

K1 —
\/ﬂ“ (687 - @F02) + 492025 + 819 — o

(3.5)

as n — 0Q.

Proof. Its proof is part of the proof of the preceding theorem. The denomi-
nator of the fraction in expression (3.5) is the square root of the limit of B in
expression (3.24) in Appendix 1. The denominator can be derived straight-
forwardly from expressions (3.17) and (3.25) in Appendix 1. The numerator
of the fraction in expression (3.5) is from (3.49) in Appendix 1. Property
(3.33) in Appendix 1 is applied to obtain the limit (3.5).

CART uses a scalar multiple of VN{IR; for selecting final trees, where
R(d;) is the sample prediction risk from the optimal tree and R(dy) may
be viewed as the sample prediction risk from any interested subtree of the
optimal tree. Under the 1-se rule, CART selects the tree whose size is the
largest among those whose corresponding +/NIR; values are larger than or
equal to 1. When data are from the simple regression model (2.1), the 1-se
rule selects the X variable in (2.1) when /NIR; is not less than 1.

Before having a close look at the expressions in Theorems 3.1 and 3.2,
we will compare, assuming that data are from the simple model (2.1), the
selection frequencies of the regressor variable between /N{IR; and v N{IR;.
Table A.1 in Appendix 2 is obtained from a simulation experiment where X
in expression (2.1) is binary taking on 1 or 2 with equal probability, No =
N = 25, 50,100, 200, 300, 8 = 0.5,1,2, and o, = 1,3. The last 4 columns
of the table are the relative frequencies that +/N;IR, and /N{IR,; each
exceeds the corresponding thresholds out of 500 iterations. The thresholds,
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1.65, 1.96, 2.33, are respectively 5, 2.5, 1 upper-percentiles of the standard
normal distribution, and the threshold 1 refers to the 1-se rule of CART as
for V/N{IR;.

The table indicates that +N;IR; tends to recommend smaller final trees
than v/N1IR4; unless o, is relatively small compared with 3. In the table, the
frequency of variable-selection by +/N;IR; is not less than that by v NiIRg;
when 8 = 2, and o, = 1. Otherwise, /N IR4s recommends the variable-
selection more often than N;IR;. We will elaborate on this below.

Recall that, in the simulation above, X takes on 1 or 2 equally likely and
the simple model (2.1) is assumed. So we can easily obtain that

Vl = 20’4
Vd.,;f - ,320'2.

From this result, we can have the values of v/Vi,/Vuis, K1, and Ky as in
Table 3.1 under the simulation setup.

The ranks of the K; values are of the same pattern as those of the K,
values. The last column of Table 3.1 is the ranks of the K ;; values in the
ascending order. The table shows that among the 6 combinations of 3 and
o., the K, value is the smallest for the (0.5, 3) combination and the largest
for the (2, 1) combination, and the same story for K. It is very interesting
to see that the ranks of the relative frequencies of variable-selection as shown
in Table A.1 match exactly to those of K4y or K;. In other words, the
ranks of the relative frequencies are, asymptotically, subject to the values of
IR4; (or IRy). Tables 3.1 and A.1 indicate that, as the values of IRy (or
IR;) get closer to 0, the regressor variable, X, will less likely be selected for
observation.

Table 3.1. Values of /Vi, \/Vuis, K1, and K;; under the simulation setting

ﬂ o \/V] \/Vd,'f Kl Kd,'f rank

051} 141] 05 10.044 |0.125| 3
311273 1.5 |0.005|0.042 1

1 1] 141 1 0.177 | 0.25 )
3| 12.73 3 0.020 [ 0.084 | 2

2 1| 141 2 0.707 | 0.5 6
311273 6 0.079 | 0.167 | 4
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Given the learning data set, L(Y1,d(X1)), -+, L(Yn,,d(Xn,)), are inde-
pendent and identically distributed, and so are L(Y;, do(X;)) — L(Y:, d1(X:)),
fori =1,2,---,Ny. Thus R(dy) — R(d;) converges in law to a normal distribu-
tion. Furthermore, given the learning data set, IR,;; converges in law, under
the condition of Theorem 3.1, to a normal distribution by Slutsky’s Theorem.
In particular, when 8 = 0, we have K,; = 0. In other words, IR,;; converges
in law to a normal distribution with mean equal to zero. But as indicated in
Theorem 3.1 the convergence is very slow. Recall that X}(L (do) — L(dy)) is
the sample variance of {L(Y;,do(X;)) — L(Y:,d1(X:))},. So the standard-
ized form of R(do) — R(d;) is given by /N1IR4; given the learning data set.
When 32 =0, v/ ]TIIRM converges in law to the standard normal distribution
given the learning data set. /N IR does not have this nice property.

Turning back to Table A.1, suppose that we use NiIRy; in variable-
selection. The table says, as is noted earlier, that the relative frequencies of
variable-selection are the smallest when 8 = 0.5 and o, = 3. The relative
frequencies appear near the upper-tail probabilities of the standard normal
curve at the threshold points in the table when N; = 25,50, while they
go beyond the upper-tail probabilities for Ny = 100, 200,300. The farther
K4; stays away from 0 upwards, the farther the relative frequencies appear
beyond the upper-tail probabilities upwards. Since /N7IR,;; follows a normal
distribution asymptotically, we can pick a threshold, in a meaningful way,
based on the standard normal curve. This feature looks more attractive than
CART’s rule for threshold-selection.

VN{IR ¢ gives rise to larger relative frequencies of variable-selection than
VN1IR; when 8 = 2 and o, = 1, while it is not the case for the other
combinations of (3,0.) considered in Table A.1. We can see the reason of
this in Table 3.1. Note that the numerators of VN{IRy; and v/N{IR, are
the same and that \/V| is smaller than \/_\7,1: only for (2,1) slot out of the
6 (3,0.) combinations. So, asymptotically speaking, IR, tends to select the
regressor variable more often than IR;;; when 8 = 2 and o, = 1. This trend
is displayed in the (2,1) slots of Table A.1.

Now we will have a closer look at Theorems 3.1 and 3.2. Example 3.1 below
may help us better understand expression (3.3), and Example 3.2 illustrates
the results of Theorems 3.1 and 3.2.

Example 3.1 Suppose that X is uniformly distributed over the interval [-a,
a]. Under this distribution, we can see that =, = 0.5. Actually, we split the
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data set so that
02 — (m 0%, +mroY,), (3.6)

the variance of the conditional means of Y after split, is maximized. Under
the simple (2.1), expression (3.6) can be rewritten as

B* (% — WLU?\'L - Wﬂag(g)a
which is simplified, from the uniform distribution of X, as in
B2a?(1 — 2 — 7%)/3.

This expression is maximized when =, = 0.5.
We know that

px =0, px, = —a/2, o% =a%/3, o%, =ad*/12,

o) = at/5, and ¢§) =a'/(2"-5).

Since ¢(3) (3) = 0, we have
4
Vi = ﬁlg + f%20?
Hence from (3.3) follows
V3
Koy = —p=———=,
2/1+ 12575
and 0.25
Ky = :

#_ 4

? ¢(
180 + 33%a +

follows from (3.5). Under the normal assumption for e, ¢ = 304, which
simplifies the previous expression into

0.25
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Both K.; and K; decrease as o, increases, and they increase as |aj3|
increases. As o, decreases or aj3 increases, the data set is more likely to split.

Table 3.2 compares K, and K, s when 8 =1 and @ = 1. From the table,
we can safely say, assuming that data are from a linear regression model,
that, for large N,, IR, tends to select variables more often than IRy when
o. is relatively small compared with the coefficients of the regressor variables
and less often than IR,;; when o, is relatively large. In other words, CART
tends to select smaller (or larger) final trees than desired when o, is relatively
larger (or smaller) compared with the regression coefficients.

Table 3.2. K; and Ky values witha =8 =1

O, K, Kdif
0.20 | 1.682 | 0.712
0.40 | 0.753 | 0.507
0.60 | 0.403 | 0.375
0.80 | 0.245 | 0.294
1.00 | 0.163 | 0.240
1.20 | 0.116 | 0.203
1.40 | 0.087 | 0.175
1.60 | 0.067 | 0.154
1.80 | 0.053 | 0.137
2.00 | 0.043 | 0.124
2.20 1 0.036 | 0.113
2.40 | 0.030 | 0.103
2.60 | 0.026 | 0.096
2.80 | 0.022 | 0.089
3.00 | 0.019 | 0.083

Example 3.2 Suppose that X is binary taking on 1 and 2 equally likely, that
B and o, in expression (2.1) are both equal to 1. Then we can easily see that
K1 = 0.177 and K4 = 0.25 from results (3.5) and (3.3), respectively. IR,
and IRy appear near 0.18 and 0.25, respectively, in Table 3.3, confirming
the results of Theorems 3.1 and 3.2 numerically. In the table, N; = N,.
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Table 3.3. Values of IR,;; under the condition of Example 3.2

N,y 20 60 100 | 200 | 300 | 400 | 500 | 600 | 700

IRy |0.193 | 0.187 | 0.174 | 0.183 | 0.180 | 0.180 | 0.180 | 0.180 | 0.175

IRy;r | 0.252 | 0.269 | 0.243 | 0.254 | 0.255 | 0.255 | 0.250 | 0.253 | 0.244

Ny 800 900 | 1000
IR, |0.18510.179 | 0.181
IR,y | 0.261 | 0.250 | 0.255

4. CONCLUDING REMARKS

CART is one of the most popular computer program for tree-regression
analysis. It is useful for analysing the data which involve both continuous and
discrete or categorical variables, and useful when a relatively large number of
variables are involved compared with the size of data. These, among other
reasons, may have made CART used in a wide range of research fields includ-
ing medicine, computer science, social and behavioral science, etc. Efforts to
improve CART are as important as the popularity of the program.

In this paper we pointed out that the final tree selection by CART may
have to be modified so that the differences of prediction risks between a pair of
trees, where one is nested in the other, may be standardized. Compared with
the standardized version (i.e., \/VIIRd,-f), it is indicated in the simulation
result of section 3 and in Examples 3.1 and 3.2 that CART tends to recom-
mend smaller trees than desired. When using the standardized version, we
may use thresholds based on the standard normal curve, since the standard-
ized version converges in law to the standard normal distribution although its
convergence is very slow. The standardized version can be applied without
difficulty when using the test set method in estimating the prediction risks
and the variance of the differences of the prediction risks between a pair of
trees.

In Table 3.2 we have seen that K, is smaller than K,;; for . < 0.8.
This implies that the estimate of the variance of R(d;) is larger than that
of R(dg) — R(d;) for o, < 0.8 under the setup of Example 3.1. Actually the
ratio of the latte to the former gets larger asymptotically as o, increases,
indicating that the trees by CART may become far smaller than the trees
by the standardized version as o, increases. Another possible drawback in
CART is, as indicated in Table 3.1, that when the regressor variable is binary,
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the regression coefficient 3 is not reflected in V; while it is in Vy;¢. This is
because V; involves L(Y,d (X)) only.

We may safely conclude that CART tends to give smaller trees than the
desired which may be obtained by applying the standardized version in se-
lecting the final tree starting back from the optimal tree (see section 1). The
process from the optimal tree to the final tree is analogous to the backward
elimination process of regression modelling.

APPENDIX 1

In this section we prove Theorem 3.1. We will use the superscript, asterisk
(*), to indicate that the superscribed refer to the learning set, and variables,
sets, or numbers concerning the test set are not superscribed. Recall that Ny
is the size of the learning set and N; the size of the test set.

R(do) = ]—Vl—lZL(Y,-,do(Xi))
= —]\t—lg(n—do(xi))?, (3.7)

where 7 is the index set of X from the test set. Since the rule do(-) is based
on the learning data set before splitting,

do=Y". (3.8)

Denote by 3" the least squares estimate of 3 based on the learning set.
Then, we may write
Y: = B X: + e, (3.9)
and
Y =p"X. (3.10)

From equations (3.7) through (3.10), we have

1 -
R(do) = FZ(/TX,-#—e,--—ﬂ'X )?

1 1€En

= /;*272,0 + 2ﬂA'T1,1 + 70,2, (3.11)
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where for a,b > 0, .
Tap = — > (Xi = X )%€}. (3.12)
Nl i€n
If we consider the left and the right subsets, we can express R(d;) by
1 1
R(dy) = - > L(Yii,dr) + — Y L(Yri,dr)
1 1€ny, Nl i€NR
1
= NT Z(YLi - dL(Xi))2 + Z(YR" - dR(X,'))2 . (313)

L R

where 7, and 7y are index sets for the test set elements that belong to the
left and the right subsets, respectively; Y;; and Yg; are the Y-values of the
ith case in the left and the right subset, respectively; and d; and dp are the
prediction rules for the left and the right subsets, respectively.

Since X and Y are from a regression model in (2.1), we may write

YL.g = B*‘X’Li + €ri and YR,' = B*XRi + €Ri- (314)
dp(X:) =Y, = "X, +e] and dn(X;) =V = B'X + e, (3.15)
where Y, (Y7) is the sample mean of the Y’s that belong to the left (right)
learning subset after split.
X, = X;/No, and Xp =) X;/Nog, (3.16)
; Tq

where n} (n}) is the index set of X’s that belong to the left (right) learning
subset after split, and No; (Nog) is the cardinality of n; (n3).
Using the above 3 expressions, we can write

R(dy)

-

= Z(B*XLi+eLi_?;,)2+ E(B'Xﬂrf-em—ﬂ)z

ien, i€NR

"

i€ng

Li€nL

R ~ 2 - - ~ 2 -
= P [ﬂ“ A2+ 287 A1+ )\0.2] + Pp [/3' P20+ 28 p11 + Po,z] ) (3.17)

13

- LS - tew- ‘)] 4 Ni [E(B*(XR,- CXT) +eni — —)2]
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where for a,b > 0,

Aoy = N1 2 (Xus = X7) (ews — €1, (3.18)
i€ny
Pap = T > (Xri — X3)%(eri — €3)’ (3.19)
1R i€ng
- N “ R
PL——"—]GI'II;, and PRZI“'PL.

From expressions (3.11) and (3.17) follows
A 2 - A a ~ -
R(do) — R(d1) = pB* (12,0 — PrA20 — Prp2o) + 28" (11,1 — PuA1,1 — Prp1,1)
+(702 — PrXo2 — Prpo2)- (3.20)
The sample variance of L(Y,do(X)) — L(Y,d1(X)) is

V(L(do)—L(dy)) = ) — L(Y;,d1(X:)) — (R(do) — R(d1))}’.

iy
161}

Now, we will represent \7(L(clo) ~ L(dy)) in terms of X, 8%, A and p.

V(L(do) — L(d1)) =

{Z (L(Y:, do) — R(do))* + 3 (L(Y:, d1) — R(d1))”

i€n i€n
—23 L(Y:i,do)L(Y;,d1) + 2N1R(do)R(d1)} . (3.21)
i€n
For the first part in expression (3.21), let
— -—-Z(L Y:,do) — R(do))?.

1611

Recall that L(Y;,do(X;)) = (Y; — do(X:))?. From equations (3.8), (3.9), and
(3.10) follows
Y: —do(X:) = 5" (X: = X) + es.
Thus, we have
A= — 3" L(Y:,do)? — R(do)®
Nl i€n

~ 4 ~3 ~ 2 -
= ,3" T4,0 + 4,3* 73,1 + 6,3' 72,2 + 4,3'7'1,3 + T0,4 — R(do)2. (322)
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For the second part in expression (3.21), let

B = — 3 (L(Y;,d1) — R(d1))*. (3.23)

i€n

1
N,
After splitting, Y’s are predicted by d;. The prediction values for the left and
the right subsets will be denoted by d, and dg, respectively.

B = iZ:L(Yf,dl)?—R(dl)?
1 i€y
1
= {Z L(Yii,dr)’ + Y L(YR;,dR)z} - R(d:)®..  (3.24)
1 1€, 1€ng

Using the notation in expressions (3.14) and (3.15), we can rewrite the
first summation part of (3.24) as

a ~ 4 ~3 A2 jalie
P, (ﬂ' A0+ 48% X3 +68" Ao +487A13 + )\0,4) .

By applying the same algebra to the second summation part of (3.24), we
have
A4 A ~ A3 A A A2, A A
B = [* (PuAso+ Prpsp) +48* (PLAsi+ Prpsi) + 68" (PLhsg + Prpa2)
+48° (PLA13 + Prp13) + (Prios + Prpos) — R(d1)?. (3.25)
For the last part of equation (3.21), we obtain, after an algebra,
1
- ZL(YndO)L(Yndl)
1 ieq
g 4 ~ ~ ol 3 A A A 2 ~ ~
=pB* (PrAs0 + Prpao) +48* (PrAsy1 + Prpsi) +68* (PuAzz + Prpea)
+ 48" (PyA1,3 + Prp1,3) + (PrXoa + Prpos) +

~ S -_— —— L),hd
(b, - 3y 4 o B L)

+ Pr("(Xp = X7) +¢5)’

L(Yy:,dy)?

ny

Npr

2onx L(YRi’dR)}+2{ﬁL(B'(YZ _5(-)+EDE,,L

+Pr(B" (X — X)) + €3 (3.26)

S L(Yaiydr)? }

ng

15
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In the above lengthy expression,

ZﬂL L(YL‘i7 dL)

- 2 ~
N = B* A0+ 28" A11 + Ao,
1L

and .
Yoo L(Yii,dL)?

.3 P .
N =0 A30+ 38" 2,1+ 38" A2 + Ao3-
1L

Similarly for
3
Yon L(Yri,dg) and Yag L(Yriydr)?
NIR NIR
by replacing A with p. Then we can express NL, Sien L(Yi,do)L(Y;,dy) in terms
of ,é*, X, X and p as below:

NLZL(n,dO)L(Yi,dl)

1 i€n
~ 4, A . NEPR . A2 . .

=B (PrAa0 + Prpao) +46* (Prhs1 + Prpsy) + 68* (Puhgz + Prpss)
+ 487 (PLA1,3 + Prp1,3) + (PrXoa + Prpod) +

had ST - ~ 2 ~
{PL (B (XL =X ) +ep)’ (B Ag0 + 268 A11 + Ao2)
al T el A2 A
+ Pr(B"(Xp — X ) +ep)?(B* poo+ 28" p11 + .00,2)}
A A . —— A3 s, s,
+2{ By (5" (X, = ) + D)6 Ao + 36001 + 38" Auz + o)

-

% [T ey _ A3 A o
+Br(B (X = X7) +23) (6" Aso + 385001 + 38 Ans + /\0,3)}. (3.27)

By combining the three results (3.22), (3.25), and (3.27), we have

M (L) — L(@y))

Ny

1
= A+B-2 {Kr_ > L(Yi,do)L(Yi,dy) — R(do)R(dl)}
1 i€n

~ 4 A A -~ 3 - ~

= " (140 — PLAso — Prpao) + 48" (13,1 — P31 — Prps)

~2 - - - A o

+63" (122 — PrAe2 — Prpag) + 487 (11,3 — PLArs — Prpra)
+(70,4 — PLAo,s — Prpoa)
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~ N oy X —_— —_— ~ 2 o
-2 [{PL (ﬂ' (XL - X ) + 62)2(,3" A2,0 + 28" A1 + )\0,2)
~ ol T ] — A2 o
+ Pr(B"(Xp — X)) t+e) (B pao+ 26 p11 + Po,z)}

A e

- 3" — /4.3 a* o
+2 {PL (B (X, =X )+e)(B As0+383221+ 38" A12 + Ao3)

+Pr(B (X - X7) + ?;)(ﬁ‘sps,o + 385 p21 + 38" 12 + po,s)}]
—(R(do) — R(d))). (3.28)
Now we will see how
R(do) — R(d:)

IRy = =
"7 (L) - Lidy)

converges as
min{Ng, N1} — oo,
by examining how R(dg) — R(d;) and 17(L(d0) — L(d;)) converge.
Some of the results concerning the O,, o, definitions are stated below

without proof (see Bishop et al. (1975), p. 484 for results (3.29) and (3.31).);
for real constants, ¢ and d,

0,(c)o,(d) = op(cd). (3.29)
0,()0,(d) = Oy(cd). (3.30)
0,(1) + 0,(1) = 0,(1). (3.31)

If U;=0,(1), then cU; = O,(1). (3.32)

Suppose U; = O,(1) and V; = d + 0,(1), for d > 0, then we have (see Rao
(1973, p. 124))
ULV = 0,(1). (3.33)
We will see how e} (expression (3.15)) converges.

Lemma 3.1 Suppose that the variance of X is bounded. Then, under the
condition that 0 < §; < 1_13111 < 6o < 00,

e, = OP(N“%), and (3.34
& = O,(N77). (3.35)
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Proof.
e = N](:;L Z (YE.' - ﬂA*XZi)

L

1 o * *
= NEEZ ((:3 - B)X5: + ELi)
= G- -pX,. (3.36)

Since Ny/N; is bounded, we can see, under the condition of the lemma,
that

—f;, —bkx, = OP(N—%)v (337)
Xn—px, = O,(N7%), (3.38)
-8 = 0,(N1). (3.39)

In the same context, we will use O, (N ~Y/2) instead of 0, (Ny /*) or 0, (N /%)
throughout the rest of the paper.

Since €7 = 0,(N~1), by equations (3.37) and (3.39) and results (3.31)
and (3.32), expression (3.34) follows. Expression (3.35) is proved in the same
way.

Lemma 3.2 Let a and b be non-negative integers with a + & > 0. Suppose
that the (a + b)th moment of X and the bth moment of ¢ are bounded, and
that 8; < %‘1’- < 63, for some 0 < §; < 63 < 00. Then we have,

Ay = 686 +0,(N"T), and (3.40)
a _1
pay = 05 ¢ +0,(N77), (3.41)

where ¢§;‘3 and ¢§?Z are the ath central moments of X; and Xy, respectively,
and ¢{® is the bth central moment of e.

Proof. ), , is given in expression (3.18). By expressions (3.14) and (3.36),

eri—ey = (8- f%”)XL.' + e — € + (B' — ,B)YZ
(B~ B ) (X1 — X))+ (€ri — €). (3.42)

Hence,
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= = (XL,- - YL)G (eri—e1)

LS (X -T) (8- )X = Ko) + (=) by (342)

nL

= .1_ Z: ( tbl ) (,3 _ B,)h Z (XL1 e )a+t1 (epi — E)HI- (3.43)

eyt

Expanding the terms (X i—X L)aHl and (ez; — €7)"*' in expression

(3.43) yields

= Za ) i:l ( tb, ) ( a:;h ) ( b;tl >(ﬂ‘é')tl(#xn - X, )
o { e S - (340

nL

If we consider the convergence rate, we may write, for t; > 0,t3 > 0, and

to+1t3 >0,

— 3 (X = px, )2 € = @2 - 918 + O, (N7F). (3.45)

By expressions (3.37), (3.39), (3.44), and (3.45), we have

': z:: i:: i ( ) ( a:'ztl ) ( b;t‘ ) (o,,(N—ir))“ : (op(N~%))“+““2.

(0 (8 ) + 0, (N F))

- 55 tbl J(*L ) (PR ) ) - (o avhy ™™
(04

N Q’))b t1— ( (t2) ¢£t3) +OP(N‘_%)) ¢(a)¢(b)+0 (N 7)

(3.46)
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By applying the properties of O, as expressed in (3.31) and (3.32), we
can see that the summation part in expression (3.46) may be replaced by
O,(N~ ’1’) under the condition of the lemma. Hence, we have the result (3.40).
The result (3.41) is proved in the same way.

Lemma 3.3 Under the same condition of Lemma 3.2,
a _1
Tas = ¢ ) + O, (N7F),

where 7, , is in expression (3.12).
Proof. Its proof is in the similar way as for Lemma 3.2, and is thus omitted.

Now we will show weak convergence of R(dg)— R(d;) and V(L (do)—L(d})).
For R(do) — R(d,):
Using the O, notation, we can write

o N N
Po=" = n, +0,(N"7) and Py = ((n — 1)/N1)—% = mx + O,(N 7).

Ny
(3.47)
By applying the results (3.39) and (3.47) and Lemmas 3.2 and 3.3, we
have, from expression (3.20),

R(do) — R(d;) = ° ( & _ @) +0,(N"1). (3.48)

See expression (3.4) for ¢\

A simple algebra leads us to another expression for R(dp) — R(d;) as in
R(do) — R(d1) = mymrB” (ux, — px,) + OP(N“IT). (3.49)

For V (L(do) — L(d1)):
Under the condition of Theorem 3.1, we know that

X —ux = O,(N°H), (3.50)
Xy —bx, = Op(N7%). (3.51)

In expression (3.28), we apply Lemma 3.3 to the 7 terms, Lemma 3.2 to the
A and the p terms, Lemma 3.1 to € terms, equation (3.48) to (R(do)—R(d1))?,
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the results (3.37), (3.39), (3.47), (3.50) and (3.51) to the other terms in (3.28),
and the properties (3.31) and (3.32) to have

Ny —1
1
= 5 {80 = o0 - (04 = GR)) - dmumalin, — )65 — 68D
+46%2 (0% — oZ) + 0,(N 1)
= 7+ 0,(N7V?), say.

V(L(do) — L(d1))

Thus we have )
V(N (do) = L(dy)) = v + O, (N V). (3.52)

By applying property (3.33) to the results (3.49) and (3.52), we have the
desired result of Theorem 3.1.

APPENDIX 2

Table A.1 Table of the Frequencies of Variable-Selection

Ny | B | o | Using Thresholds
1 1.65 | 1.96 | 2.33
25 [0.5] 1.0 a’ 0.054 | 0.014 | 0.010 | 0.006
b* 0.322 | 0.160 | 0.118 | 0.076
3.0 a 0.004 | 0.002 | 0.002 | 0.002
b 0.126 | 0.036 | 0.024 | 0.008
1.0 1.0 a 0.414 | 0.188 | 0.128 | 0.066
b 0.578 { 0.354 | 0.252 | 0.172
3.0 a 0.030 | 0.006 | 0.002 | 0.002
b 0.200 | 0.084 | 0.048 | 0.026
2010 a 0.952 | 0.902 | 0.846 | 0.790
b 0.936 | 0.788 | 0.728 | 0.586
3.0 a 0.122 | 0.036 | 0.016 | 0.006
b 0.416 | 0.228 | 0.150 | 0.098

(Note) *: a = VN1 IR,.
b= VNiIRy,.
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(Continued)
N, B o¢ | Using Thresholds
1 1.65 | 1.96 | 2.33
50 [0.5]1.0 a 0.052 | 0.004 | 0.002 | 0.000
b 0.440 | 0.234 | 0.172 [ 0.104
3.0 a 0.002 | 0.000 [ 0.000 | 0.000
b 0.136 | 0.040 | 0.018 | 0.006
1.0 [ 1.0 a 0.620 | 0.320 | 0.202 | 0.124
b 0.750 | 0.550 | 0.446 | 0.332
3.0 a 0.014 | 0.000 | 0.000 | 0.000
b 0.294 | 0.132 | 0.076 | 0.030
20|10 a 0.982 | 0.966 | 0.958 | 0.944
b 0.976 | 0.952 [ 0.924 | 0.860
3.0 a 0.182 | 0.034 | 0.016 | 0.006
b 0.536 | 0.330 | 0.224 | 0.140
100 { 0.5 | 1.0 a 0.080 | 0.004 | 0.000 | 0.000
b 0.548 [ 0.364 | 0.266 | 0.172
3.0 a 0.000 | 0.000 | 0.000 | 0.000
b 0.184 | 0.078 | 0.046 | 0.022
1.0 | 1.0 a 0.830 | 0.508 | 0.368 | 0.240
b 0.898 | 0.762 | 0.672 | 0.534
3.0 a 0.008 | 0.000 | 0.000 | 0.000
b 0.362 | 0.170 | 0.110 | 0.076
2.0 1.0 a 1.000 | 1.000 | 1.000 | 1.000
b 1.000 | 1.000 | 0.998 | 0.992
3.0 a 0.336 | 0.070 | 0.034 | 0.006
b 0.750 | 0.518 | 0.420 | 0.306
200 | 0.5 | 1.0 a 0.164 | 0.018 | 0.004 | 0.000
b 0.760 | 0.572 | 0.452 | 0.318
3.0 a 0.060 | 0.000 | 0.000 | 0.000
b 0.256 | 0.124 | 0.082 | 0.044
1.0] 1.0 a 0.978 { 0.878 | 0.778 | 0.604
b 0.990 | 0.956 | 0.926 | 0.884
3.0 a 0.010 | 0.000 | 0.000 | 0.000
b 0.598 | 0.354 | 0.262 | 0.164
20 (1.0 a 1.000 | 1.000 | 1.000 | 1.000
b 1.000 | 1.000 | 1.000 | 1.000
3.0 a 0.602 | 0.138 | 0.050 | 0.012
b 0.918 | 0.780 | 0.692 | 0.572
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(Continued)

N1 B | o | Using Thresholds
1 1.65 | 1.96 | 2.33
30005 (1.0 a 0.248 | 0.012 | 0.002 | 0.000
b 0.852 [ 0.674 | 0.580 | 0.426
3.0 a 0.000 | 0.000 | 0.000 | 0.000
b 0.328 [ 0.162 | 0.096 | 0.044
1.011.0 a 0.998 | 0.964 | 0.932 | 0.862
b 1.000 | 0.988 | 0.984 | 0.966
3.0 a 0.014 | 0.000 | 0.000 | 0.000
b 0.664 | 0.448 | 0.330 | 0.230
201 1.0 a 1.000 | 1.000 | 1.000 { 1.000
b 1.000 [ 1.000 | 1.000 | 1.000
3.0 a 0.714 | 0.286 | 0.132 | 0.044
b 0.950 | 0.836 | 0.756 | 0.646
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