• 제목/요약/키워드: Prediction of Traffic Volume

검색결과 108건 처리시간 0.021초

확률적인 중방향 설계시간 교통량 산정 모형에 관한 이론적 해석 (A Theoretical Analysis of Probabilistic DDHV Estimation Models)

  • 조준한;김성호;노정현
    • 대한교통학회지
    • /
    • 제26권3호
    • /
    • pp.199-209
    • /
    • 2008
  • 본 연구는 전통적인 중방향 설계시간교통량 산정에 대한 개념적 내용을 살펴보고 사례연구를 통해 문제점을 도출하였으며, 이를 개선하기 위해 확률적인 중방향 설계시간교통량 산정 모형을 이론적으로 정립하였다. 도로구간의 교통혼잡을 표현하기 위해서 도로용량이 희망하는 서비스수준을 수용할 수 있도록 확률 분포를 적용한 링크통행시간과 임계치를 정립하였다. 본 연구에서 제안된 확률적인 중방향 설계시간 교통량 모형은 설계속도, 구간길이, 교통량, 차로수, 중차량계수 등을 고려하여 산정하며, 도로용량에 따른 교통혼잡과 경제성 측면을 유동적으로 고려할 수 있기 때문에 도로계획 및 설계단계에 객관적으로 반영할 수 있다. 또한, 이러한 결과는 다양한 유형의 도로에 대해 결측치가 존재하는 상시조사지점이나 수시조사지점의 중방향 설계시간 교통량 예측 모형을 포함한 여러 현실문제들의 더 나은 이해를 제공할 수 있을 것으로 기대된다.

신설 도시부 도로의 장래 교통량 변화를 반영한 교통사고 예측모형 개발 (Development of Traffic Accident Prediction Models Considering Variations of the Future Volume in Urban Areas)

  • 이수범;홍다희
    • 대한교통학회지
    • /
    • 제23권3호
    • /
    • pp.125-136
    • /
    • 2005
  • 현재 도로사업의 타당성 조사 시 사용하는 교통사고 감소편익 산정시 도로등급별로 사고율을 일률적으로 적용하고 있고, 도로특성 및 V/C에 따른 특성이 고려되고 있지 못하고 있다. 이와 같은 문제점을 해결하기 위해 본 논문에서는 도로유형별 V/C 및 교통 특성을 반영하여 사고를 예측할 수 있는 모형을 개발하여 도로의 신설 및 개량에서 그 도로의 안전성을 평가할 수 있는 방법론을 제시하였다. 본 연구에서는 초기 단계로서 도시지역 도로를 대상으로 하여 모형을 개발하였다. 우선 도로유형별로 사고에 영향을 미치는 요인을 선정하였다. 이 때 선정 기준은 도로설계단계에서 획득할 수 있는 자료를 위주로 선정하였으며. 교통량, 중앙분리대의 유 무, 교차점수. 연결로수, 횡단신호등수 그리고 차로수를 선정하였다. 각 요인과 사고와의 관계를 분석해 본 결과 모두 통계적으로 유의한 수준에서 상관성이 있는 것으로 나타났다. 본 연구에서는 도로의 등급 및 V/C에 따라 4가지 유형으로 분류하고, 각각에 대하여 포아송 선형회귀식을 통하여 사고예측모형을 도출하였으며, 실제 자료를 이용하여 검증하였다. 검증결과 모형식의 결과가 실제 사고 자료에 대해 비교적 양호하게 추정력을 보이는 것으로 나타났다. 본 연구에서는 V/C에 따른 도로유형별 사고예측모형을 개발함으로써 도로의 물리적인 특성으로 인한 교통사고예측이 가능하고, 이 결과를 도로의 신설 및 개량에 대한 타당성 조사시 사고비용을 추정하는데 활용할 수 있을 것이라 판단된다. 본 연구에서 이용한 자료가 전라북도 한 지역으로 한정되어있어 전국적인 대표성을 지니는 데에는 한계가 있을 수 있다는 사실을 밝히고자한다.

구간단속장비 설치 효과 분석 및 사고예측모형 개발 (A Study on Effectiveness Analysis and Development of an Accident Prediction Model of Point-to-Point Speed Enforcement System)

  • 김다예;이호원;홍경식
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.144-152
    • /
    • 2019
  • According to the National Police Agency, point-to-point speed enforcement system is being installed and operated in 97 sections across the country. It is more effective than other enforcement systems in terms of stabilizing the traffic flow and inhibiting the kangaroo effect. But it is only 5.1% of the total enforcement systems. The National Police Agency is also aware that its operation ratio is very low and it is necessary to expand point-to-point speed enforcement system. Hence, this study aims to provide the expansion basis of the point-to-point speed enforcement operation through analysis of the quantitative effects and development the accident prediction model. Firstly, this study analyzed the effectiveness of point-to-point speed enforcement system. Naive before-after study and comparison group method(C-G Method) were used as methodologies of analyzing the effectiveness. The result of using the naive before-after study was significant. Total accidents, EPDOs and casualty crashes decreased by 42.15%, 70.64% and 45.30% respectively. And average speed and the ratio of exceeding speed limit decreased by 6.92% and 20.50%p respectively. Moreover, using the C-G method total accidents, EPDOs and casualty crashes decreased by 31.35%, 66.62% and 10.04% respectively. And average speed and the ratio of exceeding speed limit decreased by 3.49% and 56.65%p respectively. Secondly, this study developed a prediction model for the probability of casualty crash. It was dependant on factors of traffic volume, ratio of exceeding speed limit, ratio of heavy vehicle, ratio of curve section, and presence of point-to-point speed enforcement. Finally, this study selected the most danger sections to the major highway and evaluated proper installation sections to the recent installation section by applying the accident prediction model. The results of this study are expected to be useful in establishing the installation standards for the point-to-point speed enforcement system.

고속도로 화물차 교통사고 건수 예측모형 및 안전등급 개발 연구 (Study on the Development of Truck Traffic Accident Prediction Models and Safety Rating on Expressways)

  • 윤정은;정하림;박장호;강동효;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권1호
    • /
    • pp.1-15
    • /
    • 2023
  • 본 연구에서는 전국 고속도로를 대상으로 화물차 교통사고에 영향을 미치는 주요 요인을 파악하고자 한다. 이를 위해, 고속도로 교통사고 자료들과 포아송 및 음이항 회귀모형을 이용하여 화물차 교통사고 건수 예측모형을 개발하였다. 모형에서 유의한 것으로 확인된 변수는 화물차 연속주행시간지수, 구간연장, 화물차 교통량, 구간내 교량 수, 졸음쉼터 개수이다. 또한, 구축된 예측모형을 이용하여 고속도로 구간별 안전등급(level of service of safety, LOSS)을 도출하였다. 이후 LOSS를 전국 고속도로 네트워크에 표출하여 고속도로 구간별 화물차 교통사고 위험도를 진단하였다. 본 연구에서 개발된 모형과 LOSS는 고속도로에서의 화물차 교통사고 저감을 위한 정책수립의 기초자료로 활용될 것으로 기대된다.

교통수요 기반의 도착예정시간 산출 알고리즘 개발 (Development of Vehicle Arrival Time Prediction Algorithm Based on a Demand Volume)

  • 김지홍;이경순;김영호;이성모
    • 대한교통학회지
    • /
    • 제23권2호
    • /
    • pp.107-116
    • /
    • 2005
  • 교통정보 제공 측면에서 여행시간에 대한 정보는 교통관리 영역 내에서 교통혼잡을 효과적으로 분산시킬 수 있는 핵심정보 중 하나이다. 특히 여행시간에 대한 정보는 운전자가 운전 중 경로선택을 의사결정하는데 있어서 주요한 요소로서 현실적인 신뢰도 확보를 전제로 한다. 본 연구는 남산권 교통정보시스템의 일환으로 총 연장도로 6.1km를 대상으로 구성된 6개의 교통축(corridor)을 대상으로 혼잡시 VMS, ARS, WEB을 이용한 정보 제공을 목적으로 도착예정시간 알고리즘을 개발하였다. 시스템의 공간적 범위는 각 축별 2~3.5km 범위내의 구간을 대상으로 하며, 각 교통축의 출발 및 도착지점에 신호교차로가 존재하여 단순한 연속교통류 특성이외 단속류 교통특성이 교통류내에 포함되어 있다. 목표 알고리즘은 ILD기초자료를 활용하여 수요교통량과 대기길이정보를 이용한다. 수요교통량은 각 지점간 밀도추정을 대상으로 하였으며 이를 위하여 Greenburg Model이 채택되었다. 대기길이 정보는 각 지점별 속도와 밀도에 의하여 산출된다. 연구모형은 단위시간당 변동성을 안정화하기 위하여 전략적으로 번호판 매칭기법에 의한 AVI를 도입하였으며, 이를 통한 관측 된 여행시간 정보를 이용하였다. AVI여행시간 정보는 1일 1회 대기길이에 따른 교통류 특성을 구분하여 ILD에 의한 여행시간을 생성하는데 기반모수로 적용될 수 있도록 Hybrid Model로 구성하여 적용시켰다. 본 연구에 의한 알고리즘 적용결과, 혼잡상황하에서 84% 그리고 전체평균 88%이상의 정확성을 도출하는 것으로 나타났으며, 이러한 정보들은 남산권 교통정보시스템을 이용하는 운전자들에게 유용한 것으로 조사되었다.

사고등급별 고속도로 교통사고 처리시간 예측모형 개발 (Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level)

  • 이숭봉;한동희;이영인
    • 대한교통학회지
    • /
    • 제33권5호
    • /
    • pp.497-507
    • /
    • 2015
  • 고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.

돌발상황 검지를 위한 교통 CCTV 기반 통행속도 추정 모델 (A Travel Speed Prediction Model for Incident Detection based on Traffic CCTV)

  • 기용걸;김용호
    • 산업융합연구
    • /
    • 제18권3호
    • /
    • pp.53-61
    • /
    • 2020
  • 통행속도는 도로의 교통상황을 측정하고, 교통사고와 같은 돌발상황 발생을 검지하는데 활용되는 중요한 정보이다. 본 논문에서 영상처리 기술을 활용하여 도로구간의 통행속도를 정확하게 측정하는 모델을 제안하였다. 제안 모델은 교통 CCTV 영상에서 차량 객체를 추출하고, 딥러닝 기술 등을 활용하여 차량을 추적하여, 도로구간의 통행속도 및 교통량 등과 같은 교통정보를 수집한다. 또한, 새로운 모델은 데이터 융합기술을 활용하여 정확한 구간통행속도를 수집하여 사용자에게 제공하는 것이 가능하다. 제안 모델을 서울시 오금교에서 현장실험한 결과, 기존 교통정보센터 통행속도 정확도(62.8%)보다 새 모델의 정확도가 높은 것(83.6%)을 확인하였다.

직광에 의한 눈부심 현상이 터널 출구부 안전성에 미치는 영향 연구 (A Study for Influence of Sun Glare Effect on Traffic Safety at Tunnel Hood)

  • 김영록;김상엽;최재성;이대성
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.103-110
    • /
    • 2012
  • PURPOSES : In Korea, over 70 percent of the land consists of mountainous and rolling area. Thus, tunnels continue its upward trend as road network are extended. In these circumstances, the importance of tunnel has been increased nowadays and then its safety investigation and research should be performed. This study is focus on confirming and improving the safety of tunnel. On tunnel hood, sunglare effect can irritate driver's behavior instantly and this can result in incident. METHODS : The study of this phenomenon is rarely conducted in domestic and foreign papers, so there is no proper measure for this. This study analyzes the driving environment of the effect of sunglare effect on tunnel hood. RESULTS : Traffic accidents stem from complex set of factors. This study build the Traffic Accident Prediction Models to find out the effect of sunglare effect on tunnel's hood. The independent variables are traffic volume, geometric design of road, length of tunnel and road side environment. Using these variables, this model estimates accident frequency on tunnel hood by Poisson regression model and Negative binomial regression model. Although Poisson regression model have more proper goodness of fit than Negative binomial regression model, Poisson regression model has overdipersion problem. So the Negative binomial regression model is used in this analysis. CONCLUSIONS : Consequently, the model shows that sunglare effect can play a role in driving safety on tunnel hood. As a result, the information of sunglare effect should be noticed ahead of tunnel hood so this can prevent drivers from being in hazard situation.

GIS 자료를 이용한 초과소음지도 작성과 소음 평가 (Excess Noise Map for Environmental Standard and Assessment of Noise with Using GIS Data)

  • 고준희;이병찬;임재석;박수진;장서일
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1075-1082
    • /
    • 2009
  • Using GIS data of C-si as basic data when making noise map of road traffic, we estimated exactly the noise excess areas and consequently suggested the population and the area exposed to road traffic noise accurately. We made 3D noise map to assess regional distribution of noise quantitatively. The noise map consists of noise prediction model based on data base such as traffic volume and speed changes for estimating quantitatively the noise and 3D urban space model which includes locations of noise sources, 3D buildings, topography and roads. We made noise standard map according to land use conditions and compared this map to road traffic noise map, and consequently made excess noise map. Using excess noise map, we assessed areas which exceed environmental noise level standards and noise guidelines quantitatively and effectively through GIS spatial analysis, and consequently more accurate noise exposed area and noise exposed population could be estimated. To show buildings' outer walls noise exposure, we analyzed 3D urban noise distributions using 3D-analysis of GIS.

차량검지기 교통량 데이터를 이용한 고속도로 통행시간 추정 및 예측모형 개발에 관한 연구 (Development of a Freeway Travel Time Estimating and Forecasting Model using Traffic Volume)

  • 오세창;김명하;백용현
    • 대한교통학회지
    • /
    • 제21권5호
    • /
    • pp.83-95
    • /
    • 2003
  • 본 연구는 차량검지기 데이터를 이용한 통행시간 추정 및 예측에 관한 수집기법 및 추정·예측기법의 고찰을 통해 고속도로 환경에 적합한 통행시간 추정 및 예측모형을 개발하는 데 목적이 있다. 먼저, 기존 통행시간 추정기법의 고찰을 통해 차량검지기에서 수집되는 교통데이터 중 교통류의 변동을 민감하게 포착할 수 있는 교통량을 이용한 통행시간 추정모형을 정립하고자 하였다. 기존방식인 차량검지기 속도 데이터를 이용한 통행시간과 본 연구에서 제안한 추정모형과의 비교 분석을 위해, 실측치에 거의 근사하는 통행료 징수시스템의 출발지기준 통행시간을 이용하여 통행시간 산출기법의 적용성 평가를 수행한 결과, 고속도로 구간의 혼잡시 본 연구모형에 의한 통행시간 산출방식이 기존방식보다 신뢰성있는 통행시간을 제공할 수 있는 것으로 나타났다. 따라서, 본 연구에서는 고속도로 구간의 차량통과속도가 70km/h이상일 때는 기존 차량검지기 속도데이터를 이용한 통행시간 산출방식을 적용하고 혼잡시에는 교통량을 이용한 추정모형에 의한 통행시간 산출방식을 병용하여 적용하는 것이 타당하다는 결론을 도출하였다. 통계적 모형을 이용한 교통상황의 예측과 보다 정확한 통행시간을 예측하기 위해 본 연구에서 칼만필터를 이용한 단기 예측을 수행해 본 결과, 시시각각 변화하는 고속도로의 교통류에 대해 예측력이 우수한 것으로 판단되었다.