• Title/Summary/Keyword: Prediction of Crop Production

Search Result 76, Processing Time 0.027 seconds

Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선)

  • Song, Chan-Yeong;Kim, So-Hee;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

Pest Prediction in Rice using IoT and Feed Forward Neural Network

  • Latif, Muhammad Salman;Kazmi, Rafaqat;Khan, Nadia;Majeed, Rizwan;Ikram, Sunnia;Ali-Shahid, Malik Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.133-152
    • /
    • 2022
  • Rice is a fundamental staple food commodity all around the world. Globally, it is grown over 167 million hectares and occupies almost 1/5th of total cultivated land under cereals. With a total production of 782 million metric tons in 2018. In Pakistan, it is the 2nd largest crop being produced and 3rd largest food commodity after sugarcane and rice. The stem borers a type of pest in rice and other crops, Scirpophaga incertulas or the yellow stem borer is very serious pest and a major cause of yield loss, more than 90% damage is recorded in Pakistan on rice crop. Yellow stem borer population of rice could be stimulated with various environmental factors which includes relative humidity, light, and environmental temperature. Focus of this study is to find the environmental factors changes i.e., temperature, relative humidity and rainfall that can lead to cause outbreaks of yellow stem borers. this study helps to find out the hot spots of insect pest in rice field with a control of farmer's palm. Proposed system uses temperature, relative humidity, and rain sensor along with artificial neural network to predict yellow stem borer attack and generate warning to take necessary precautions. result shows 85.6% accuracy and accuracy gradually increased after repeating several training rounds. This system can be good IoT based solution for pest attack prediction which is cost effective and accurate.

Studies on Some Weather Factors in Chon-nam District on Plant Growth and Yield Components of Naked Barley (전남지역의 기상요인이 과맥의 생육 및 수량구성 요소에 미치는 영향)

  • Don-Kil Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.19
    • /
    • pp.100-131
    • /
    • 1975
  • To obtain basic information on the improvement of naked barley production. and to clarify the relation-ships between yield or yield components and some meteorogical factors for yield prediction were the objectives of this study. The basic data used in this study were obtained from the experiments carried out for 16 years from 1958 to 1974 at the Chon-nam Provincial Office of Rural development. The simple correlation coefficients and multiple regression coefficients among the yield or yield components and meteorogical factors were calculated for the study. Days to emergence ranged from 8 to 26 days were reduced under conditions of mean minimum air temperature were high. The early emergence contributed to increasing plant height and number of tillers as well as to earlier maximum tillering and heading date. The plant height before wintering showed positive correlations with the hours of sunshine. On the other hand, plant height measured on march 1st and March 20th showed positive correlation with the amount of precipitation and negative correlation with the hours of sunshine during the wintering or regrowth stage. Kernel weights were affected by the hours of sunshine and rainfall after heading, and kernel weights were less variable when the hours of sunshine were relatively long and rainfalls in May were around 80 to 10mm. It seemed that grain yields were mostly affected by the climatic condition in March. showing the negative correlation between yield and mean air temperature, minimum air temperature during the period. In the other hand, the yield was shown to have positive correlation with hours of sunshine. Some yield prediction equations were obtained from the data of mean air temperature, mean minimum temperature and accumulated air temperature in March. Yield prediction was also possible by using multiple regression equations, which were derived from yield data and the number of spikes and plant height as observed at May 20th.

  • PDF

Identifying Factors for Corn Yield Prediction Models and Evaluating Model Selection Methods

  • Chang Jiyul;Clay David E.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.268-275
    • /
    • 2005
  • Early predictions of crop yields call provide information to producers to take advantages of opportunities into market places, to assess national food security, and to provide early food shortage warning. The objectives of this study were to identify the most useful parameters for estimating yields and to compare two model selection methods for finding the 'best' model developed by multiple linear regression. This research was conducted in two 65ha corn/soybean rotation fields located in east central South Dakota. Data used to develop models were small temporal variability information (STVI: elevation, apparent electrical conductivity $(EC_a)$, slope), large temporal variability information (LTVI : inorganic N, Olsen P, soil moisture), and remote sensing information (green, red, and NIR bands and normalized difference vegetation index (NDVI), green normalized difference vegetation index (GDVI)). Second order Akaike's Information Criterion (AICc) and Stepwise multiple regression were used to develop the best-fitting equations in each system (information groups). The models with $\Delta_i\leq2$ were selected and 22 and 37 models were selected at Moody and Brookings, respectively. Based on the results, the most useful variables to estimate corn yield were different in each field. Elevation and $EC_a$ were consistently the most useful variables in both fields and most of the systems. Model selection was different in each field. Different number of variables were selected in different fields. These results might be contributed to different landscapes and management histories of the study fields. The most common variables selected by AICc and Stepwise were different. In validation, Stepwise was slightly better than AICc at Moody and at Brookings AICc was slightly better than Stepwise. Results suggest that the Alec approach can be used to identify the most useful information and select the 'best' yield models for production fields.

Applicability Analysis of Major Crop Models on Korea for the Adaptation to Climate Change (기후변화 대응을 위한 주요 작물모델의 국내 적용성 분석)

  • Song, Yongho;Lim, Chul-Hee;Lee, Woo-Kyun;Eom, Ki-Cheol;Choi, Sol-E;Lee, Eun Jung;Kim, Eunji
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • Suitable climate condition is essential for stable growth of crops which directly leads to an increase in crop production. Preceding domestic researches mostly used crop models to predict grain or crop yield in relation to climate change. However, the use of various models and input data based on foreign background lowered the reliability for result. Therefore in this study, we evaluated domestic applicability by comparing and analyzing various crop models developed abroad. In addition, we selected models based on the possibility of acquiring input data and suggested domestic applicability.

Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data in the Geumho River Basin, Korea (LARS-WG 기후자료를 이용한 금호강 유역 모의발생 벼 생산량의 불확실성)

  • Nkomozepi, Temba D.;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of agreement (IoA), prediction efficiency ($R^2$), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed $R^2$ of 0.78, 0.90 and 0.96 respectively after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of $4.5^{\circ}C$ in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and $0.173t{\cdot}ha^{-1}$ for the 2020s, 2050s and 2090s, respectively.

Analysis of Literatures Related to Crop Growth and Yield of Onion and Garlic Using Text-mining Approaches for Develop Productivity Prediction Models (양파·마늘 생산성 예측 모델 개발을 위한 텍스트마이닝 기법 활용 생육 및 수량 관련 문헌 분석)

  • Kim, Jin-Hee;Kim, Dae-Jun;Seo, Bo-Hun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.374-390
    • /
    • 2021
  • Growth and yield of field vegetable crops would be affected by climate conditions, which cause a relatively large fluctuation in crop production and consumer price over years. The yield prediction system for these crops would support decision-making on policies to manage supply and demands. The objectives of this study were to compile literatures related to onion and garlic and to perform data-mining analysis, which would shed lights on the development of crop models for these major field vegetable crops in Korea. The literatures on crop growth and yield were collected from the databases operated by Research Information Sharing Service, National Science & Technology Information Service and SCOPUS. The keywords were chosen to retrieve research outcomes related to crop growth and yield of onion and garlic. These literatures were analyzed using text mining approaches including word cloud and semantic networks. It was found that the number of publications was considerably less for the field vegetable crops compared with rice. Still, specific patterns between previous research outcomes were identified using the text mining methods. For example, climate change and remote sensing were major topics of interest for growth and yield of onion and garlic. The impact of temperature and irrigation on crop growth was also assessed in the previous studies. It was also found that yield of onion and garlic would be affected by both environment and crop management conditions including sowing time, variety, seed treatment method, irrigation interval, fertilization amount and fertilizer composition. For meteorological conditions, temperature, precipitation, solar radiation and humidity were found to be the major factors in the literatures. These indicate that crop models need to take into account both environmental and crop management practices for reliable prediction of crop yield.

Effect of Sample Preparation on Prediction of Fermentation Quality of Maize Silages by Near Infrared Reflectance Spectroscopy

  • Park, H.S.;Lee, J.K.;Fike, J.H.;Kim, D.A.;Ko, M.S.;Ha, Jong Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.643-648
    • /
    • 2005
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and $R^2_{v}$ (variance accounted for in validation set), was slightly better with the LN treatment ($R^2$ 0.75-0.90) than for OD ($R^2$ 0.43-0.81) or IF ($R^2$ 0.62-0.79) treatments. Fermentation characteristics could be successfully predicted by NIRS analysis either with dry or fresh silage. Although statistical results for the OD and IF treatments were the lower than those of LN treatment, intact fresh (IF) treatment may be acceptable when processing is costly or when possible component alterations are expected.

Comparison of Machine Learning-Based Greenhouse VPD Prediction Models (머신러닝 기반의 온실 VPD 예측 모델 비교)

  • Jang Kyeong Min;Lee Myeong Bae;Lim Jong Hyun;Oh Han Byeol;Shin Chang Sun;Park Jang Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • In this study, we compared the performance of machine learning models for predicting Vapor Pressure Deficits (VPD) in greenhouses that affect pore function and photosynthesis as well as plant growth due to nutrient absorption of plants. For VPD prediction, the correlation between the environmental elements in and outside the greenhouse and the temporal elements of the time series data was confirmed, and how the highly correlated elements affect VPD was confirmed. Before analyzing the performance of the prediction model, the amount and interval of analysis time series data (1 day, 3 days, 7 days) and interval (20 minutes, 1 hour) were checked to adjust the amount and interval of data. Finally, four machine learning prediction models (XGB Regressor, LGBM Regressor, Random Forest Regressor, etc.) were applied to compare the prediction performance by model. As a result of the prediction of the model, when data of 1 day at 20 minute intervals were used, the highest prediction performance was 0.008 for MAE and 0.011 for RMSE in LGBM. In addition, it was confirmed that the factor that most influences VPD prediction after 20 minutes was VPD (VPD_y__71) from the past 20 minutes rather than environmental factors. Using the results of this study, it is possible to increase crop productivity through VPD prediction, condensation of greenhouses, and prevention of disease occurrence. In the future, it can be used not only in predicting environmental data of greenhouses, but also in various fields such as production prediction and smart farm control models.

A Study on Smart Farmer Service Using Community Mapping (커뮤니티 매핑을 활용한 스마트파머 서비스에 관한 연구)

  • Koo, Jee Hee;Lee, Seung Woo;Lee, Ga eun;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.419-427
    • /
    • 2021
  • Due to the effects of climate change and the reduction of the labor force due to COVID-19, the crop yield, harvest time, and cultivated area are rapidly changing every year. In order to respond flexibly to this situation, attempts to apply smart farm technology based on ICT (Information and Communication Technology) to individual farms are increasing. On the other hand, various stakeholders are trying to predict the yield of crops using artificial intelligence and IoT technology, but accurate prediction is difficult due to the lack of learning data. In this study, in order to overcome the data collection problem limited to a specific institution, a smart farmer service technology based on community mapping was developed in which farmers directly participate, input and share accurate data to predict production. In the process, analysis was performed on napa cabbage, which is a vegetable with a large price change compared to production.