• Title/Summary/Keyword: Prediction modeling

Search Result 1,881, Processing Time 0.03 seconds

Modeling and Prediction of Time Series Data based on Markov Model (마코프 모델에 기반한 시계열 자료의 모델링 및 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.

Comparison of the Performance of Log-logistic Regression and Artificial Neural Networks for Predicting Breast Cancer Relapse

  • Faradmal, Javad;Soltanian, Ali Reza;Roshanaei, Ghodratollah;Khodabakhshi, Reza;Kasaeian, Amir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5883-5888
    • /
    • 2014
  • Background: Breast cancer is the most common cancers in female populations. The exact cause is not known, but is most likely to be a combination of genetic and environmental factors. Log-logistic model (LLM) is applied as a statistical method for predicting survival and it influencing factors. In recent decades, artificial neural network (ANN) models have been increasingly applied to predict survival data. The present research was conducted to compare log-logistic regression and artificial neural network models in prediction of breast cancer (BC) survival. Materials and Methods: A historical cohort study was established with 104 patients suffering from BC from 1997 to 2005. To compare the ANN and LLM in our setting, we used the estimated areas under the receiver-operating characteristic (ROC) curve (AUC) and integrated AUC (iAUC). The data were analyzed using R statistical software. Results: The AUC for the first, second and third years after diagnosis are 0.918, 0.780 and 0.800 in ANN, and 0.834, 0.733 and 0.616 in LLM, respectively. The mean AUC for ANN was statistically higher than that of the LLM (0.845 vs. 0.744). Hence, this study showed a significant difference between the performance in terms of prediction by ANN and LLM. Conclusions: This study demonstrated that the ability of prediction with ANN was higher than with the LLM model. Thus, the use of ANN method for prediction of survival in field of breast cancer is suggested.

The prediction of floating position of human model after wearing life-jacket based on the three dimensional modeling (3차원 모델링을 통한 구명복 착용 후 부양자세 예측)

  • Bi, Chong-Song;Kim, Dong-Joon;Park, Jong-Heon;Min, Kyong-Cheol;Lee, Jae-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.257-266
    • /
    • 2011
  • Recently, the manufacturers of life-jacket are very interested in the acquisition of USCG(US Coast Guard) approval because the acquisition of USCG approval has an important role in the purchasing decision of the buyer's. Be based on criterion of USCG, we studied how to predict the change of floating position of human model with life-jacket to verify the backside restore. For this, in this study, the human model and the lifejacket was modeled in three dimension, the application program for prediction of floating position was developed, and plugged-in commercial program.

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.

Performance of Tall Buildings in Urban Zones: Lessons Learned from a Decade of Full-Scale Monitoring

  • Kijewski-Correa, T.;Kareem, A.;Guo, Y.L.;Bashor, R.;Weigand, T.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.179-192
    • /
    • 2013
  • The lack of systematic validation for the design process supporting tall buildings motivated the authors' research groups and their collaborators to found the Chicago Full-Scale Monitoring Program over a decade ago. This project has allowed the sustained in-situ observation of a collection of tall buildings now spanning worldwide. This paper overviews this program and the lessons learned in the process, ranging from appropriate technologies for response measurements to the factors influencing accurate prediction of dynamic properties all the way to how these properties then influence the prediction of response using wind tunnel testing and whether this response does indeed correlate with in-situ observations. Through this paper, these wide ranging subjects are addressed in a manner that demonstrates the importance of continued promotion and expansion of full-scale monitoring efforts and the ways in which these programs can provide true value-added to building owners and managers.

Multilevel modeling of diametral creep in pressure tubes of Korean CANDU units

  • Lee, Gyeong-Geun;Ahn, Dong-Hyun;Jin, Hyung-Ha;Song, Myung-Ho;Jung, Jong Yeob
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4042-4051
    • /
    • 2021
  • In this work, we applied a multilevel modeling technique to estimate the diametral creep in the pressure tubes of Korean Canada Deuterium Uranium (CANDU) units. Data accumulated from in-service inspections were used to develop the model. To confirm the strength of the multilevel models, a 2-level multilevel model considering the relationship between channels for a CANDU unit was compared with existing linear models. The multilevel model exhibited a very robust prediction accuracy compared to the linear models with different data pooling methods. A 3-level multilevel model, which considered individual bundles, channels, and units, was also implemented. The influence of the channel installation direction was incorporated into the three-stage multilevel model. For channels that were previously measured, the developed 3-level multilevel model exhibited a very good predictive power, and the prediction interval was very narrow. However, for channels that had never been measured before, the prediction interval widened considerably. This model can be sufficiently improved by the accumulation of more data and can be applied to other CANDU units.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Prediction of Marine Accident Frequency Using Markov Chain Process (마코프 체인 프로세스를 적용한 해양사고 발생 예측)

  • Jang, Eun-Jin;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.266-266
    • /
    • 2019
  • Marine accidents are increasing year by year, and various accidents occur such as engine failure, collision, stranding, and fire. These marine accidents present a risk of large casualties. It is important to prevent accidents beforehand. In this study, we propose a modeling to predict the occurrence of marine accidents by applying the Markov Chain Process that can predict the future based on past data. Applying the proposed modeling, the probability of future marine accidents was calculated and compared with the actual frequency. Through this, a probabilistic model was proposed to prepare a prediction system for marine accidents, and it is expected to contribute to predicting various marine accidents.

  • PDF

Improved version of LeMoS hybrid model for ambiguous grid densities

  • Shevchuk, I.;Kornev, N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-281
    • /
    • 2018
  • Application of the LeMoS hybrid (LH) URANS/LES method for the wake parameters prediction is considered. The wake fraction coefficient is calculated for inland ship model M1926 under shallow water conditions and compared to results of PIV measurements. It was shown that due to lack of the resolved turbulence at the interface between LES and RANS zones the artificial grid induced separations can occur. In order to overcome this drawback, a shielding function is introduced into LH model. The new version of the model is compared to the original one, RANS $k-{\omega}$ SST and SST-IDDES models. It is demonstrated that the proposed modification is robust and capable of wake prediction with satisfactory accuracy.

Characteristic Prediction and Analysis of 3-D Embedded Passive Devices (3차원 매립형 수동소자의 특성 예측 및 분석에 대한 연구)

  • Shin, Dong-Wook;Oh, Chang-Hoon;Lee, Kyu-Bok;Kim, Jong-Kyu;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.607-610
    • /
    • 2003
  • The characteristic prediction and analysis of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. The four different structures of 3-D inductor are fabricated by using low-temperature cofired ceramic (LTCC) process. The circuit model parameters of the each building block are optimized and extracted using the partial element equivalent circuit method and HSPICE circuit simulator. Based on the model parameters, predictive modeling is applied for the structures composed of the combination of the modeled building blocks. And the characteristics of test structures, such as self-resonant frequency, inductance and Q-factor, are analyzed. This approach can provide the characteristic conception of 3-D solenoid embedded inductors for structural variations.

  • PDF