• Title/Summary/Keyword: Prediction method

Search Result 9,107, Processing Time 0.038 seconds

Factor Analysis Affecting on Chartering Decision-making in the Dry Bulk Shipping Market (부정기 건화물선 시장에서 용선 의사결정에 영향을 미치는 요인 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.151-163
    • /
    • 2024
  • This study sought to confirm the impact of analytical methods and behavioral economic theory factors on decision-making when making chartering decisions in the dry bulk shipping market. This study on chartering decision-making model was began to verify why shipping companies do not make rational decision-making and behavior based on analytical methods such as freight prediction and process of alternative selection in the same market situation. To understand the chartering decision-making model, it is necessary to study the impact of behavioral economic theory such as heuristics, loss aversion, and herding behavior on chartering decision-making. Through AHP analysis, the importance of the method factors relied upon in chartering decision-making. The dependence of the top factors in chartering decision-making was in the following order: market factors, heuristics, internal factors, herding behavior, and loss aversion. Market factors, heuristics, and internal factors. As for detailed factors, spot freight index and empirical intuition were confirmed as the most important factors relied on when making decisions. It was confirmed that empirical intuition is more important than internal analysis, which is an analytical method. This study can be said to be meaningful in that it academically researched and proved the bounded rationality of humans, which cannot be fully rational, and sometimes relies on experience or psychological tendencies, by applying it to the chartering decision-making model in the dry bulk shipping market. It also suggests that in the dry bulk shipping market, which is uncertain and has a high risk of loss due to decision-making, the experience and insight of decision makers have a very important impact on the performance and business profits of the operation part of shipping companies. Even though chartering are a decision-making field that requires judgment and intuition based on heuristics, decision-makers need to be aware of this decision-making model in order to reduce repeated mistakes of deciding contrary to market situation. It also suggests that there is a need to internally research analytical methods and procedures that can complement heuristics such as empirical intuition.

Respiratory Gas Exchange and Ventilatory Functions at Maximal Exercise (최대운동시의 호흡성 가스교환 및 환기기능)

  • Cho, Yong-Keun;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.900-912
    • /
    • 1995
  • Background: Although graded exercise stress tests are widely used for the evaluation of cardiorespiratory performance, normal standards on respiratory gas exchange and ventilatory functions at maximal exercise in Koreans have not been well established. The purpose of this study is to provide reference values on these by sex and age, along with derivation of some of their prediction equations. Method: Symptom-limited maximal exercise test was carried out by Bruce protocol in 1,000 healthy adults consisting of 603 males and 397 females, aged 20~66 years. Among them VC, $FEV_1$ and MVV were also determined in 885 cases. All the subjects were members of a health center, excluding athletes. During the exercise, subjects were allowed to hold on to front hand rail of the treadmill for safety purpose. Results: The $VO_2\;max/m^2$, $VCO_2\;max/m^2$ and $V_E\;max/m^2$ were greater in males than in females and decreased with age. The RR max in men and women was similar but decreased slightly with age. The $V_T$ max was markedly greater in men but showed no significant changes with age in either gender. The mean of $V_T$ max/VC, $V_E$ max/MVV and BR revealed that there were considerable ventilatory reserves at maximal exercise even in older females. The regression equations of the cardinal parameters obtained using exercise time(ET, min), age(A, yr), height(Ht, cm), weight(W, kg), sex(S, 0=male; 1=female), VC(L), $FEV_1$(L) and $V_E$ max(L) as variables are as follows: $VO_2\;max/m^2$(L/min)=1.449+0.073 ET-0.007A+0.010W-0.006Ht-0.209S, $VCO_2\;max/m^2$(L/min)=1.672+0.063ET-0.008A+0.010W-0.005Ht-0.319S, VE max/$m^2$(L/min)=58.161+1.503ET-0.315A-9.871S or VE max/$m^2$(L/min)=47.873+6.548 $FEV_1$-5.715 S, and VT max(L)=1.497+0.223VC-0.493S. Conclusion: Respiratory gas exchange and ventilatory variables at maximal exercise were studied in 1,000 non-athletes by Bruce protocol. During exercise, the subjects were allowed to hold on to hand rail of the treadmill for safety purpose. We feel that our results would provide ideal target values for patients and healthy individuals to be achieved, since our study subjects were members of a health center whose physical fitness levels were presumably higher than ordinary population.

  • PDF

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Effect of the Suicide Prevention Program to the Impulsive Psychology of the Elementary School Student (자살예방 프로그램이 초등학교 충동심리에 미치는 영향)

  • Kang, Soo Jin;Kang, Ho Jung;Cho, Won Cheol;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • In this study, the early suicide prevention program was applied to the elementary school students and compared the prior & post effect of the program, and verified the status of psychology change like emotional status, or temptation to take a suicide, and presented the possibility as a suicide prevention program. The period of adolescence is the very unstable period in the process of growth being cognitively immature, emotionally impulsive period. It is the period emotionally unstable and unpredictable possible to select the method of suicide as an extreme method to escape the reality, or impulsive problem solving against small conflict or dispute situation. Many stress of the student such as recent nuclear family, expectation of parents to their children, education problem, socio-environmental elements, individual psychological factor lead students to the extreme activity of suicide in recent days. In this study, the scope of stress experienced in the elementary school as well as idea and degree of temptation regarding suicide by the suicide prevention program were identified, and through prevention program such as meditation training, breath training and through experience of anger control, emotion-expression, self overcome and establish positive self-identity and make understanding Self-control, Self-esteem & preciousness of life based on which the effect to suicide prevention was analyzed. The study was made targeting 51 students of 2 classes of 6th grade of elementary school of Goyang-si and processed 30 minutes every morning focused on through experience & activity of the principle & method of brain science. The data was collected for 20 times before starting morning class by using Suicide Probability Scale(herein SPS-A) designed to predict effectively suicide Probability, suicide risk prediction scale, surveyed by 7 areas such as Positive outlook, Within the family closeness, Impulsivity, Interpersonal hostility, Hopelessness, Hopelessness syndrome, suicide accident. Analytical methods and validation was used the Wilcoxon's signed rank test using SPSS Program. Though the process of program in short period, but there was a effective and positive results in the 7 areas in the average comparison. But in the t-test result, there was a different outcome. It indicated changes in the 3 questionnaires (No.7, No.14, No.19) out of 31 SPS-A questionnaires, and there was a no change to the rest item. It also indicated more changes of the students in the class A than class B. And in case of the class A students, psychological changes were verified in the areas of Hopelessness syndrome, suicide accident among 7 areas after the program was processed. Through this study, it could be verified that different results could be derived depending on the Student tendency, program professional(teacher in charge, processing lecturer). The suicide prevention program presented in this article can be a help in learning and suicide prevention with consistent systematization, activation through emotion and impulse control based on emotional stress relief and positive self-identity recovery, stabilization of brain waves, and let the short period program not to be died out but to be continued connecting from childhood to adolescence capable to make surrounding environment for spiritual, physical healthy growth for which this could be an effective program for suicide prevention of the social problem.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.

A STUDY ON THE CORRELATIONSHIP OF SUBMENTOVERTEX VIEW AND LATERAL CEPHALOGRAM MEASUREMENTS (이하두정방사선사진과 측모두부방사선사진상에서의 계측치 상호연관성에 관한연구)

  • Cho, Jae-Hyung;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.414-420
    • /
    • 1996
  • Cephalometric measureements have disadvantage of representing cranio-facial structures in two dimension only and therefore they pose limitations in describing three-dimentional structures of cranio-facial region. More interests have been put on the correlation between the two planes. This study evaluated correlations between facial type score, which allows effects on malocclusion, growth change prediction and establishment of treatment method and prognosis, and measurements from submentovertex view. Cephalometric view and submentovertex view were taken of skeletal Class I adults with optimal profile and correlations between them have been observed. Following results were obtained: 1. To learn about factors that influence average condylar angulation, FACE, INT-CO-ANG, MN-CORPUS, CON-RATIO, GON-RATIO, MN-RATIO were used as variables and underwent multiple regression analysis. As a result, the following equation was obtained : CON-AVE=.l73(FACE)-.322(INT-CO-ANG)+36.34(GON-RATIO) +.420(MN-CORPUS) (($R^2=.85451$) 2. The following equation was obtained concerning facial type score. FACE= .050(CON-ANG)+.023(INT-CO-ANG)-.075(MN-CORPUS)($R^2=.31547$) 3. Among the submentovertex measurements, MN-CORPUS, CON-RATIO, GON-RATIO, MN-RATIO showed close correlations. (P<0.05) 4. Average condylar angualtions were $23.37^{\circ}$ on the right and $20.71^{\circ}$ on left. There was a difference between the two. FACE : facial type soore. CON-ANG: mean value of condylar angulation. CON-AVE: mean value of Rt. Lt condylar angulation. INT-CO-ANG : angle between Rt. Lt condylar axis. MN-CORPUS : angle formed between RT. Lt gonion & pogonion. CON-RATIO: lntercondylar distance/mandibular body length. GON-RATIO : intergonion distanoe/mandibular body length. MN-RATIO: lntermylohyoid distance/mandibular body length. MX-RATIO: intermaxillary tuberosity distance/ANS-PNS distance.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Development on Early Warning System about Technology Leakage of Small and Medium Enterprises (중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구)

  • Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 2017
  • Due to the rapid development of IT in recent years, not only personal information but also the key technologies and information leakage that companies have are becoming important issues. For the enterprise, the core technology that the company possesses is a very important part for the survival of the enterprise and for the continuous competitive advantage. Recently, there have been many cases of technical infringement. Technology leaks not only cause tremendous financial losses such as falling stock prices for companies, but they also have a negative impact on corporate reputation and delays in corporate development. In the case of SMEs, where core technology is an important part of the enterprise, compared to large corporations, the preparation for technological leakage can be seen as an indispensable factor in the existence of the enterprise. As the necessity and importance of Information Security Management (ISM) is emerging, it is necessary to check and prepare for the threat of technology infringement early in the enterprise. Nevertheless, previous studies have shown that the majority of policy alternatives are represented by about 90%. As a research method, literature analysis accounted for 76% and empirical and statistical analysis accounted for a relatively low rate of 16%. For this reason, it is necessary to study the management model and prediction model to prevent leakage of technology to meet the characteristics of SMEs. In this study, before analyzing the empirical analysis, we divided the technical characteristics from the technology value perspective and the organizational factor from the technology control point based on many previous researches related to the factors affecting the technology leakage. A total of 12 related variables were selected for the two factors, and the analysis was performed with these variables. In this study, we use three - year data of "Small and Medium Enterprise Technical Statistics Survey" conducted by the Small and Medium Business Administration. Analysis data includes 30 industries based on KSIC-based 2-digit classification, and the number of companies affected by technology leakage is 415 over 3 years. Through this data, we conducted a randomized sampling in the same industry based on the KSIC in the same year, and compared with the companies (n = 415) and the unaffected firms (n = 415) 1:1 Corresponding samples were prepared and analyzed. In this research, we will conduct an empirical analysis to search for factors influencing technology leakage, and propose an early warning system through data mining. Specifically, in this study, based on the questionnaire survey of SMEs conducted by the Small and Medium Business Administration (SME), we classified the factors that affect the technology leakage of SMEs into two factors(Technology Characteristics, Organization Characteristics). And we propose a model that informs the possibility of technical infringement by using Support Vector Machine(SVM) which is one of the various techniques of data mining based on the proven factors through statistical analysis. Unlike previous studies, this study focused on the cases of various industries in many years, and it can be pointed out that the artificial intelligence model was developed through this study. In addition, since the factors are derived empirically according to the actual leakage of SME technology leakage, it will be possible to suggest to policy makers which companies should be managed from the viewpoint of technology protection. Finally, it is expected that the early warning model on the possibility of technology leakage proposed in this study will provide an opportunity to prevent technology Leakage from the viewpoint of enterprise and government in advance.

Utility of B-type Natriuretic Peptide in Patients with Acute Respiratory Distress Syndrome (급성호흡곤란증후군 환자에 있어서 B-type Natriuretic Peptide의 유용성)

  • Rhee, Chin Kook;Joo, Young Bin;Kim, Seok Chan;Park, Sung Hak;Lee, Sook Young;Koh, Yoon Seok;Kim, Young Kyoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.5
    • /
    • pp.389-397
    • /
    • 2007
  • Background B-type natriuretic peptide (BNP) has been shown to be strong mortality predictors in a wide variety of cardiovascular syndromes. Little is known about BNP in patients with acute respiratory distress syndrome (ARDS). We studied whether BNP can predict mortality in patients with ARDS. Method Echocardiographic study was done to all patients with ARDS, and we excluded patient with low ejection fraction (less than 50%) or showing any features of diastolic dysfunction. 47 patients were enrolled between December, 2003 and February, 2006. Parameters including BNP were obtained within 24h hours at the time of enrollment. Result Mean BNP concentrations and APACHE II scores differed between the survivors and nonsurvivors (BNP, $219.5{\pm}57.7pg/mL$ vs $492.3{\pm}88.8pg/mL$; p=0.013, APACHE II score, $17.4{\pm}1.6$ vs $23.1{\pm}1.3$, p=0.009, respectively). With the use of the threshold value for BNP of 585 pg/mL, the specificity for the prediction of mortality was 94%. The threshold value for APACHE II of 15.5 showed sensitivity of 87%. 'APACHE II + $11{\times}logBNP$' showed sensitivity 63%, and specificity 82%, using threshold value for 46.14. Conclusion BNP concentrations and APCHE II scores were more elevated in nonsurvivors than survivors in patients with ARDS who have normal ejection fraction. BNP can predict mortality. Further study should be done.