• 제목/요약/키워드: Prediction density

검색결과 825건 처리시간 0.025초

An Edge-Based Adaptive Method for Removing High-Density Impulsive Noise from an Image While Preserving Edges

  • Lee, Dong-Ho
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.564-571
    • /
    • 2012
  • This paper presents an algorithm for removing high-density impulsive noise that generates some serious distortions in edge regions of an image. Although many works have been presented to reduce edge distortions, these existing methods cannot sufficiently restore distorted edges in images with large amounts of impulsive noise. To solve this problem, this paper proposes a method using connected lines extracted from a binarized image, which segments an image into uniform and edge regions. For uniform regions, the existing simple adaptive median filter is applied to remove impulsive noise, and, for edge regions, a prediction filter and a line-weighted median filter using the connected lines are proposed. Simulation results show that the proposed method provides much better performance in restoring distorted edges than existing methods provide. When noise content is more than 20 percent, existing algorithms result in severe edge distortions, while the proposed algorithm can reconstruct edge regions similar to those of the original image.

Assessment of the Performance of B2PLYP-D for Describing Intramolecular π-π and σ-π Interactions

  • Choi, Tae-Hoon;Han, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4195-4198
    • /
    • 2011
  • Intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions are omnipresent for numerous energetic and structural phenomena in nature, and the exact description of these nonbonding interactions plays an important role in the accurate prediction of the three-dimensional structures for numerous interesting molecular systems such as protein folding and polymer shaping. We have selected two prototype molecular systems for benchmarking calculations of intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions. Accurately describing conformational energy of such systems requires highly elaborate but very expensive ab initio methods such as coupled cluster singles, doubles, and (triples) (CCSD(T)). Our calculations reveal a double hybrid density functional incorporating dispersion correction (B2PLYP-D) that agrees excellently with the CCSD(T) results, indicating that B2PLYP-D can serve as a practical method of choice.

오염물질의 특성이 막오염 지수에 미치는 영향 (Effect of Foulant Characteristics on Membrane Fouling Index)

  • 박찬혁;김하나;홍승관
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.775-780
    • /
    • 2005
  • This study was performed to investigate the effect of foulant characteristics on Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). A linear relationship was found relating the fouling index (both SDI and MFI) on particle concentration, but fouling index values were nonlinearly (exponentially) with increasing organic concentration. When organic matter was the primary cause of fouling, the MFI was not accurately predicted due to internal fouling such as pore adsorption. The fouling index was determined mainly by particle characteristics when both particle and organic coexisted in the feed water. This observation was attributed to lessening of organic pore adsorption by particle cake layer formed on the membrane surface. Bench-scale actual fouling experiments demonstrated that permeate flux declines much faster with feed water containing particles than organic matters although fouling potential predicted by SDI values were identical, indicating that the accurate prediction of fouling potential requires the development of fouling index reflecting different foulant characteristics.

물 위에 사는 곤충의 부양과 가라앉음에 관한 연구 (Study on the Floating and Sinking of Insects Living on Water)

  • 이덕규;김호영
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.982-986
    • /
    • 2006
  • It is well known that the surface tension forces can make a particle denser than water float when the size of the particle is of the order of 1 mm. This is deeply related to the basic mechanism enabling small insects to wander around on the pond surface and also to a newly emerging technology of self-assembly using capillary forces. For the quantitative understanding of this effect, we experimentally study the maximum density of a cylinder that can float on water and how fast the cylinder sinks when the density exceeds the maximum value. We compare our experimental results with the theoretical prediction and find good agreement between them.

실내모형 실험을 통한 수평재하말뚝의 회전점 산정 (Estimation of Rotation Point of Laterally Loaded Piles through Laboratory Test)

  • 황성욱;홍정무;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.744-747
    • /
    • 2008
  • In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.

  • PDF

독성폐기물로 오염된 산업촉매 재생공정에 초임계유체기술의 적용 (Superitical fluid (SCF) technology application to the regeneration of industrial catalyst contaminated with toxic materials)

  • 이재동;윤용수;홍인권;정일현
    • 한국안전학회지
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 1992
  • Supercritical fluid technology was applied to the regeneration of industrial catalyst contaminated with toxic materials. The regeneration process of activated loaded with phenol was proposed, then the adsorphon tower was packed with the activated carbon-bed. Phenol diffuses into supercritical carbon dioxide(SCC) through the micro-pore and voldge of the activated carbon. The saturated solubility of phenol in SCC depended on the density of SCC varing with temperature and pressure conditions. Therefore, the fasile phase equilibrium calculation model of dxpanded liquid One was proposed, and equilibrium solubility of phenol in SCC was calculated using the model theoretically. The regeneration mechanism of activated carbon was analysed by degree of saturation of phenol and diffusion in SCC. The solubility prediction was more satisfactory for the wide range of SCC density than the dense gas model and the desorption of phenol depended on the degree of saturation of phenol in SCC.

  • PDF

고밀도 암면 다중판의 차음성능 (Sound Insulation performance of multi-layered panels with high density mineral wool)

  • 강현주;김재승;김현실;김봉기;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.421-424
    • /
    • 2000
  • This paper investigates the characteristics of analytical models in prediction of sound transmission loss for the multi-layered panels with high density mineral wools. The results show that the sandwich model is more adequate to account for sound insulation performance of those panels than the poro-elastic model. In order to improve STC(Sound Transmission Class), the effect of fiber directions of mineral wools is examined, analytically and experimentally. From the comparison of the measurements with the predictions, it is evident that the vertical fiber directions of mineral wools enhance STC value up to 6 dB, compared to that of the horizontal fiber directions.

  • PDF

Approximate Nonrandom Two-Fluid Lattice-Hole Theory. Thermodynamic Properties of Real Mixtures

  • 유기풍;신훈용;이철수
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.841-850
    • /
    • 1997
  • A simple molecular theory of mixtures is formulated based on the nonrandom two-fluid lattice-hole theory of fluids. The model is applicable to mixtures over a density range from zero to liquid density. Pure fluids can be completely characterized with only two molecular parameters and an additional binary interaction energy is required for a binary mixture. The thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid parameters and the binary interaction energies. The Quantitative prediction of vapor-liquid, and solid-vapor equilibria of various mixtures are demonstrated. The model is useful, in particular, for mixtures whose molecules differ greatly in size. For real mixtures, satisfactory agreements are resulted from experiment. Also, the equation of state (EOS) is characterized well, even the liquid-liquid equilibria behaviors of organic mixtures and polymer solutions with a temperature-dependent binary interaction energy parameter.

지중열교환기 수직 보어홀 및 수평 트렌치 뒤채움재로서 모래-물 혼합물의 열전도도 측정 (Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches)

  • 손병후
    • 설비공학논문집
    • /
    • 제20권5호
    • /
    • pp.342-350
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand (silica, quartzite, limestone and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 150 tests were performed in a thermal conductivity measuring system (TPSYS02) to characterize the relationships between the thermal conductivity of mixtures and the water content. The results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The results also show that for constant water contents and a dry density value, the thermal conductivity of mixtures increases with increasing thermal conductivity of solid particles. The measurement results were also compared with the most widely used empirical prediction models for the thermal conductivity of soils.

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.