• Title/Summary/Keyword: Prediction density

Search Result 823, Processing Time 0.032 seconds

A Study on the Prediction of Performance due to Cycle Simulation Model in Spark Ignition Engine (SI 기관에 있어서 사이클 시뮬레이션에 의한 성능예측에 관한 연구)

  • 한영출;이원일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.91-101
    • /
    • 1986
  • Relations of each factor affected by emissions and the prediction of performance have been analyzed numerically by cycle simulation in the Spark Ignition Engine. Through theoretical analysis and experiments, the results are obtained as below. The calculated results and the experimental ones are almost highly agreeable on cycle simulation model, exhaust gas analysis and efficiency for processes in cylinder. Therefore this model is proved appropriate and can be useful for optimum design of Spark Ignition Engines on parametric studies. It is reaffirmed that the Wiebe's function is suitable for predicting Combustion Ration in Spark Ignition Engines. On parametric studies, it is found that optimum conditions whose density of emissions are lower and efficiency is maximum within propriety value are crankangle ATDC $15^\circ-20^\circ$, 2400 rpm. A/F=16 in this experiment.

  • PDF

Theoretical Prediction Method on Occurrence of Spark Knock (스파크노크 발생에 대한 이론적 예측방법)

  • 이내현;오영일;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

Study on Prediction of High Temperature Thermal Behavior of, Automotive Catalytic Converters with Oval Type (오벌형 자동차 촉매 컨버터의 고온 열적 거동 예측에 관한 연구)

  • 허형석;원종필;이규현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • Considering the high temperature durability, the most important issue is to accurately predict the maximum operating temperature of the shell, mat and substrate. This temperature prediction then defines the material selections far the mat, shell and cones, and allows an assessment to be made as to the necessity of heat shielding. In this papers, The commercial code FLUENT was utilized to simulate automotive oval type catalytic converters, with the objective of predicting thermal behavior under steady-state, high-load conditions. Specialized computational models are used to account for effects of heat and mass transfer in the monolith, conjugate heat transfer in the various converter materials, and radiation heat transfer.

Prediction models for compressive strength of concrete with Alkali-activated binders

  • Kar, Arkamitra;Ray, Indrajit;Unnikrishnan, Avinash;Halabe, Udaya B.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.523-539
    • /
    • 2016
  • Alkali-activated binder (AAB) is increasingly being considered as an eco-friendly and sustainable alternative to portland cement (PC). The present study evaluates 30 different AAB mixtures containing fly ash and/or slag activated by sodium hydroxide and sodium silicate by correlating their properties from micro to specimen level using regression. A model is developed to predict compressive strength of AAB as a function of volume fractions of microstructural phases (physicochemical properties) and ultrasonic pulse velocity (elastic properties and density). The predicted models are ranked and then compared with the experimental data. The correlations were found to be quite reasonable (R2 = 0.89) for all the mixtures tested and can be used to estimate the compressive strengths for similar AAB mixtures.

Analytical Approach for Rotor Loss Prediction of Permanent Magnet Synchronous Generator with Multi-Pole Rotor (다극 회전자를 갖는 영구자석 동기 발전기의 회전자 손실 예측을 위한 해석적 접근)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Ko, Kyoung-Jin;Sung, Tae-Hyun;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.719-720
    • /
    • 2008
  • This paper deals with analytical approach for rotor loss prediction of permanent magnet synchronous generator(PMSG). The rotor losses of synchronous generator are induced by the magnets. Since stator of our model is skewed, slotting effect can be negligible for our PM wind turbine generator. In order to calculate eddy current, this paper derives analytical solutions by the magnetic vector potential. Finally this paper compared analytical result with eddy current density obtained from finite element(FE) calculations using phase current harmonics analysis.

  • PDF

PREDICTION OF AIRFOIL CHARACTERISTICS WITH VARIOUS TURBULENCE MODELING (다양한 난류 모텔에 따른 익형 특성 예측)

  • Kim, C.W.;Lee, Y.G.;Lee, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.50-52
    • /
    • 2007
  • In the present paper, some difficulties encountered in predicting airfoil characteristics are described and solutions for those problems are discussed Since drag is determined by the amounts of pressure and, especially, shear stress, accurate estimation of shear stress is very crucial. However shear stress computation is dependent on the grid density and turbulence model, it should be consistent in preparing grid and turbulence model. When the transition from laminar to turbulent happen at the middle of airfoil, CFD solver should divide the region into laminar and turbulent region based on the transition location.

  • PDF

A Dry-Spot Model for the Prediction of Critical Heat Flux in Water Boiling in Bubbly Flow Regime

  • Ha, Sang-Jun;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.546-551
    • /
    • 1997
  • This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling.

  • PDF

Analysis of Small Current Interruption Performance for $SF_6$ Gas Circuit Breaker ($SF_6$ 가스차단기의 소전류 차단성능 해석)

  • Kim, Hong-Kyu;Song, Ki-Dong;Chong, Jin-Kyo;Oh, Yeon-Ho;Park, Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.528-533
    • /
    • 2006
  • To analyze the small current interruption performance for the gas circuit breakers, the gas density and electric field intensity should be calculated. In this paper, the FVFLIC method is used for the gas flow analysis and the FEM for the electric field analysis. Then, the dielectric withstanding voltage is evaluated by the empirical formulation or Streamer theory. By comparing the calculated dielectric strength with the test result, it is found that both methods show good prediction capability for the small current interruption performance. Especially, when both methods predict the same interrupting performance, the prediction is in accordance with the experimental result.

Detection of a Bias Level in Prediction Errors due to Input Acceleration (입력 가속에서 비롯된 예측오차 바이어스 레벨의 검출)

  • Shin, Hae-Gon;Hong, Sun-Mog
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 1993
  • In this paper the normalized innovations squared of a Kalman filter is used to detect a bias level in prediction errors due to target accelerations. The probability density function of the normalized innovation squared is obtained for a steady state Kalman filter, and it is used to calculate the detection probability of the bias level. A typical example is given to compute the detection probability and to plot the maneuver detector operating characteristic curves.

  • PDF

A Study on the Prediction Method of Belt Edge Separation due to the Belt Width Variation of a Tire (타이어의 Belt Width 변화에 따른 Belt Edge Separation 예측 방법에 관한 연구)

  • Kim Seong-Rae;Sung Ki-Deug;Kim Son-Joo;Cho Choon-Tack
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.137-144
    • /
    • 2006
  • This study is concerned with the relation between steelbelt width and belt edge separation of a tire. Belt edge separation causes tire burst and threatens passenger's safety. For the reason, it is important to predict durability caused by belt edge separation in the early stage of the tire structure design. Usually, passenger car tires have two layers of steelbelts having opposite steel cord's angles, which makes a shear behaviour between each belt layer. Shear behaviour is one of reason to cause belt edge separation. In this study, to predict belt edge separation, we suggested the prediction method of belt edge separation and evaluated the effect of steelbelt width on the belt edge separation using FEM. We also studied on main parameters to affect shear behaviour at the belt edge area.