• Title/Summary/Keyword: Prediction Yield

Search Result 547, Processing Time 0.027 seconds

A Prediction of Wafer Yield Using Product Fabrication Virtual Metrology Process Parameters in Semiconductor Manufacturing (반도체 제조 가상계측 공정변수를 이용한 웨이퍼 수율 예측)

  • Nam, Wan Sik;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.572-578
    • /
    • 2015
  • Yield prediction is one of the most important issues in semiconductor manufacturing. Especially, for a fast-changing environment of the semiconductor industry, accurate and reliable prediction techniques are required. In this study, we propose a prediction model to predict wafer yield based on virtual metrology process parameters in semiconductor manufacturing. The proposed prediction model addresses imbalance problems frequently encountered in semiconductor processes so as to construct reliable prediction model. The effectiveness and applicability of the proposed procedure was demonstrated through a real data from a leading semiconductor industry in South Korea.

Development of a New Cluster Index for Semiconductor Wafer Defects and Simulation - Based Yield Prediction Models (변동계수를 이용한 반도체 결점 클러스터 지표 개발 및 수율 예측)

  • Park, Hang-Yeob;Jun, Chi-Hyuck;Hong, Yu-Shin;Kim, Soo-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.371-385
    • /
    • 1995
  • The yield of semiconductor chips is dependent not only on the average defect density but also on the distribution of defects over a wafer. The distribution of defects leads to consider a cluster index. This paper briefly reviews the existing yield prediction models ad proposes a new cluster index, which utilizes the information about the defect location on a wafer in terms of the coefficient of variation. An extensive simulation is performed under a variety of defect distributions and a yield prediction model is derived through the regression analysis to relate the yield with the proposed cluster index and the average number of defects per chip. The performance of the proposed simulation-based yield prediction model is compared with that of the well-known negative binomial model.

  • PDF

Rice yield prediction in South Korea by using random forest (Random Forest를 이용한 남한지역 쌀 수량 예측 연구)

  • Kim, Junhwan;Lee, Juseok;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • In this study, the random forest approach was used to predict the national mean rice yield of South Korea by using mean climatic factors at a national scale. A random forest model that used monthly climate variable and year as an important predictor in predicting crop yield. Annual yield change would be affected by technical improvement for crop management as well as climate. Year as prediction factor represent technical improvement. Thus, it is likely that the variables of importance identified for the random forest model could result in a large error in prediction of rice yield in practice. It was also found that elimination of the trend of yield data resulted in reasonable accuracy in prediction of yield using the random forest model. For example, yield prediction using the training set (data obtained from 1991 to 2005) had a relatively high degree of agreement statistics. Although the degree of agreement statistics for yield prediction for the test set (2006-2015) was not as good as those for the training set, the value of relative root mean square error (RRMSE) was less than 5%. In the variable importance plot, significant difference was noted in the importance of climate factors between the training and test sets. This difference could be attributed to the shifting of the transplanting date, which might have affected the growing season. This suggested that acceptable yield prediction could be achieved using random forest, when the data set included consistent planting or transplanting dates in the predicted area.

Lab Color Space based Rice Yield Prediction using Low Altitude UAV Field Image

  • Reza, Md Nasim;Na, Inseop;Baek, Sunwook;Lee, In;Lee, Kyeonghwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.42-42
    • /
    • 2017
  • Prediction of rice yield during a growing season would be very helpful to magnify rice yield as it also allows better farm practices to maximize yield with greater profit and lesser costs. UAV imagery based automatic detection of rice can be a relevant solution for early prediction of yield. So, we propose an image processing technique to predict rice yield using low altitude UAV images. We proposed $L^*a^*b^*$ color space based image segmentation algorithm. All images were captured using UAV mounted RGB camera. The proposed algorithm was developed to find out rice grain area from the image background. We took RGB image and applied filter to remove noise and converted RGB image to $L^*a^*b^*$ color space. All color information contain in both $a^*$ and $b^*$ layers and by using k-mean clustering classification of these colors were executed. Variation between two colors can be measured and labelling of pixels was completed by cluster index. Image was finally segmented using color. The proposed method showed that rice grain could be segmented and we can recognize rice grains from the UAV images. We can analyze grain areas and by estimating area and volume we could predict rice yield.

  • PDF

Development of Korean Paddy Rice Yield Prediction Model (KRPM) using Meteorological Element and MODIS NDVI (기상요소와 MODIS NDVI를 이용한 한국형 논벼 생산량 예측모형 (KRPM)의 개발)

  • Na, Sang-Il;Park, Jong-Hwa;Park, Jin-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.141-148
    • /
    • 2012
  • Food policy is considered as the most basic and central issue for all countries, while making efforts to keep each country's food sovereignty and enhance food self-sufficiency. In the case of Korea where the staple food is rice, the rice yield prediction is regarded as a very important task to cope with unstable food supply at a national level. In this study, Korean paddy Rice yield Prediction Model (KRPM) developed to predict the paddy rice yield using meteorological element and MODIS NDVI. A multiple linear regression analysis was carried out by using the NDVI extracted from satellite image. Six meteorological elements include average temperature; maximum temperature; minimum temperature; rainfall; accumulated rainfall and duration of sunshine. Concerning the evaluation for the applicability of the KRPM, the accuracy assessment was carried out through correlation analysis between predicted and provided data by the National Statistical Office of paddy rice yield in 2011. The 2011 predicted yield of paddy rice by KRPM was 505 kg/10a at whole country level and 487 kg/10a by agroclimatic zones using stepwise regression while the predicted value by KOrea Statistical Information Service was 532 kg/10a. The characteristics of changes in paddy rice yield according to NDVI and other meteorological elements were well reflected by the KRPM.

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.

Effect of Somatic Cell Score on Protein Yield in Holsteins

  • Khan, M.S.;Shook, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.580-585
    • /
    • 1998
  • The study was conducted to determine if variation in protein yield can be explained by expressions of early lactation somatic cell score (SCS) and if prediction can be improved by including SCS among the predictors. A data set was prepared (n = 663,438) from Wisconsin Dairy Improvement Association (USA) records for protein yield with sample days near 20. Stepwise regression was used requiring F statistic (p < .01) for any variable to stay in the model. Separate analyses were run for 12 combinations of four seasons and first three parities. Selection of SCS variables was not consistent across seasons or lactations. Coefficients of detennination ($R^2$) ranged from 51 to 61% with higher values for earlier lactations. Including any expression of SCS in the prediction equations improved $R^2$ by < 1 %. SCS was associated with milk yield on the sample day, but the association was not strong enough to improve the prediction of future yield when other expressions of milk yield were in the model.

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

Performance Analysis of Deep Reinforcement Learning for Crop Yield Prediction (작물 생산량 예측을 위한 심층강화학습 성능 분석)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.99-106
    • /
    • 2023
  • Recently, many studies on crop yield prediction using deep learning technology have been conducted. These algorithms have difficulty constructing a linear map between input data sets and crop prediction results. Furthermore, implementation of these algorithms positively depends on the rate of acquired attributes. Deep reinforcement learning can overcome these limitations. This paper analyzes the performance of DQN, Double DQN and Dueling DQN to improve crop yield prediction. The DQN algorithm retains the overestimation problem. Whereas, Double DQN declines the over-estimations and leads to getting better results. The proposed models achieves these by reducing the falsehood and increasing the prediction exactness.

Genetic Studies and Development of Prediction Equations in Jersey${\times}$Sahiwal and Holstein-Friesian${\times}$Sahiwal Half Breds

  • Singh, P.K.;Kumar, Dhirendra;Varma, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.179-184
    • /
    • 2005
  • First lactation records (174) of Jersey${\times}$Sahiwal and Holstein Friesian${\times}$Sahiwal half breds under 9 sires maintained at Chandra Shekher Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India from 1975-1983, were used to estimate the genetic parameters and to predict herd life milk yield and average milk yield per day of herd life from first lactation traits. The traits included were: age at first calving, first service period, first lactation period, first calving interval, first lactation milk yield, milk yield per day of first calving interval, herd life milk yield, herd life and average milk yield per day of herd life. Most of the production and reproduction traits were found to have positive and significant correlations between them on genetic as well as phenotypic scales. Total twelve regression equations were fitted. The prediction equation of herd life milk yield in both the genetic groups showed linear relationship with AFC, FSP, FLP, FLMY and MY/DCI and was apparent and significant. Similarly, polynomials for milk yield per day of herd life for J${\times}$S and HF${\times}$S half breds also showed linear trend, which was found highly significant. The highest and lowest $R^2$ values were found for FCI and AFC, respectively.