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ABSTRACT

In this study, the random forest approach was used to predict the national mean rice yield of
South Korea by using mean climatic factors at a national scale. A random forest model that
used monthly climate variable and year as an important predictor in predicting crop yield.
Annual yield change would be affected by technical improvement for crop management as
well as climate. Year as prediction factor represent technical improvement. Thus, it is likely
that the variables of importance identified for the random forest model could result in a
large error in prediction of rice yield in practice. It was also found that elimination of the
trend of yield data resulted in reasonable accuracy in prediction of yield using the random
forest model. For example, yield prediction using the training set (data obtained from 1991
to 2005) had a relatively high degree of agreement statistics. Although the degree of
agreement statistics for yield prediction for the test set (2006-2015) was not as good as
those for the training set, the value of relative root mean square error (RRMSE) was less
than 5%. In the variable importance plot, significant difference was noted in the importance
of climate factors between the training and test sets. This difference could be attributed to
the shifting of the transplanting date, which might have affected the growing season. This
suggested that acceptable yield prediction could be achieved using random forest, when the
data set included consistent planting or transplanting dates in the predicted area.
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1. Introduction Thus, each country needs to establish a national food

security policy. The agriculture and food industries

Precise pre-harvest prediction of crop yield is very also need to analyze the global food supply and
important for both commercial and public sectors. demand in order to ensure stable resource management.
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Various crop yield forecasting methods have been
developed to address these social needs (Baruth et
al., 2005; Basso et al, 2013). Yield forecasting
methods include statistical models, crop growth
models, and remote sensing approach. Statistical
models are traditional regression models that have
long been used to predict crop yield. They evaluate
the relationship between climate factors and crop
yield by using regression and develop equations to
predict crop yield (Landau et al., 2000; Lobell et al.,
2010; Ray et al., 2015). Statistical models require
sufficient long-term data from numerous local sites
as training or calibration sets. The crop growth
models are process-oriented models that require many
input factors for precise prediction and can simulate
crop growth processes and yield (Boote et al., 1996;
Kim et al., 2012). Occasionally, an intensive input
factor is a major hindrance for the application of crop
growth models. Remote sensing has been developed
and widely used over the last decades (Knipling ef
al., 1970; Tucker et al., 1981; Moran et al., 1994;
Wardlow et al., 2008). It can monitor the status of
crops in large areas and analyze the data; however,
obtaining data from a required area by using this
approach is not always possible. The advantage of
statistical models is that the information n required
is less and the approach is cost-effective, unlike other
forecasting methods. Recently, random forest, one of
the ensemble machine-learning techniques, was
adopted for crop yield prediction; it showed
promising results over the traditional regression
models (Jeong et al., 2016). This method successfully
improved crop yield prediction over various locations
by using soil and cultivation information as well as
climatic factors as input data. However, in practical
prediction, obtaining required information in the
intact form is difficult, for example, specific local
climate data corresponding to crop yield of a specific
local area.

Rice is the most important crop in South Korea,
and its yield prediction is essentially required for
both the government to establish agriculture policies

and farmers to manage their business. Crop yield

forecasting by using the random forest method
requires regional climate data and cultivation
information from every rice field. Further, it is
associated with two issues: limitation of input data
and temporal yield trend. First, since specific regional
climate data are not available for most rice fields in
South Korea, the rice yield prediction should be
evaluated using the nationwide average yield and
nationwide averaged climate data. Second, the
random forest approach predicts yield by determining
the relationship between variation in climate and crop
yield. When temporal yield trend is caused by
technical improvements instead of climate variations,
such as genetic improvement and pesticide or
herbicide application, the underlying assumption of
crop yield prediction might not hold true and lead
to a biased conclusion or mislead the result
interpretation. Year has been reported to be the most
influential predictor variable for yield prediction in
random forest and reflected the yield trend (Jeong
et al., 2016). However, yield prediction has to be
conducted every year, and the future trend needs to
be assumed to be the same as the past evaluated trend.

In this study, we evaluated the performance of
random forest to predict the average rice yield by
using average climate factors in South Korea. Further,
we addressed the temporal yield trend issues to

improve the practical prediction using random forest.

II. Materials and Methods

2.1. Rice yield and climate data in South Korea

The national average of milled rice yield data
over 25 years from 1991 to 2015 was obtained from
the Korean Statistical Information Service
(www.kosis.kr). Climate data included minimum,
mean, and maximum temperatures and sunshine
hour, which were obtained from the Korea
Meteorological ~Administration (www.kma.go.kr/
weather/climate/past_table.jsp); for 54 sites, sunshine
hour was recorded for more than 30 years (Lee et
al., 2011). Precipitation was not included as a

climatic factor in this study, because rice fields in
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South Korea are equipped with irrigation systems,
and about 80.6% of rice fields are well irrigated
(www.index.go.kr/potal/info/idxKoreaView.do?idx_
Cd=1287). Furthermore, the total precipitation ranged
from 1030 to 1900 mm, and most rainfall was

distributed in the summer season.

2.2. Random forest predictions

The random forest is an ensemble technique based
on a combination of a large decision tree (Breiman
et al., 2001). Individual decision trees for prediction
in random forest are trained by randomly selecting
candidate variables, i.e., predictors, from the training
data set. The final prediction in random forest is the
average of predictions from individual decision trees.
In this study, the random forest prediction was
conducted using the statistical program R v2.15.3
with ‘Random Forest’ package.

2.3. Yield prediction using mean yield and climate
data

Three climate factors including monthly maximum/
minimum temperature and sunshine hour per month-
were averaged over 54 sites, which were used as
predictors of a random forest. In this evaluation, year
was also included as a predictor. The number of
ensemble for the random forest was 300. Year was
also used as a predictor for the random forest as
Jeong et al.(2016) suggested. Data for 15 years from
1991 to 2005 were used for the random forest

prediction.

2.4. Yield prediction using detrended yield data

Previous report showed the successful prediction
by including the observation year as social and
technical factors, such as developing cultivars or
cultivation (Jeong et al., 2016). However, in this
study, the trend induced by technical improvement
was removed to predict the yield by using only
climate data. The moving average was used to
remove the trend; moving averages of 3, 5, and 10

years were applied, and an optimum moving average

was selected for further analysis. The trend-removed
yield, AYield, (Eq. 1), was used for random forest
prediction instead of the observed yield, AYield,.
Thus, the predicted yield was obtained as Eq. 2.

AYield, = Yield,—MA,_, (Eq. 1)

Yield, = AYield,+MA,_, (Eq. 2)
where Yield, represents the observed yield of year
of n, and MA,, is the moving average up to year
n - 1. Briefly, AYteld, was obtained using the random
forest prediction from the relationship between
climate data and trend-removed yield, AYield, (Eq.
1). Moving average (MA,.;) was added to convert
AYield, to predicted yield, AYield, (Eq. 2). Data
obtained from 1991 to 2005 were used as the training
set, and those obtained from 2006 to 2015 were used
as model test set.

2.5. Evaluation of random forest performance in
rice yield prediction

Three statistical methods, which are commonly
used as measures for agricultural system and crop
models, were used to evaluate the random forest
performance in this study (Knipling et al., 1970; Kim
et al., 2012). These are relative root mean square
error (RRMSE, Eq. 3) (Loague et al., 1991), Nash-
Sutcliffe model efficiency (EF, Eq. 4) (Nash et al.,
1970), and index of agreement (d, Eq. 5) (Willmott
et al., 1981).

Z1(0i—Pp?

RRMSE = % X (Eq. 3)
n
_ 2(0i—Pi)?
EF =1-%r0r0y (Eq. 4)
n .—p:)2
d=1- 207 (Eq. 5)

1(IPi—0|+|0;-0|)?

where, O represents observation, P is the predictions,

and o is the observation mean in the dataset. RRMSE
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is a measure of deviation between observed and
model prediction. EF is used to evaluate the
predictive power by comparing with the observed
mean. Willmott’s d indicates the agreement between
The model

visualized by generating the

the observed and predicted data.
performance was

observed vs. predicted variable importance plots.

III. Results and Discussion

The national mean rice yield prediction results are
shown in Figures 1 and 2. The results showed that
the predicted values were significantly close to the
observed ones, even though the national mean
climatic factors were very limited data with
significant information losses (Fig. 1 and Fig. 2).

RRMSE was as low as 2.4%, and EF was 0.94,
high
Willmott’s agreement index, d, was also close 1,

suggesting the efficiency of the model.
which indicated good agreement between predicted
and observed yields. In the time series data, predicted
and observed yields showed a good agreement (Fig.
2). However, this significant agreement might not
show actual cause-and-effect relationship. To address
this issue, we generated the variable importance plot

to evaluate the importance of each predictor (Fig. 3).
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The evaluation results suggested that the minimum
temperature in August, year, minimum temperature
in June, maximum temperature in August, and mean
temperature in May were the important predictors
(Fig. 3). The climate condition of the reproductive
period is more important than that of the vegetative
period in South Korea (Yun ef al., 2013). Therefore,
the temperature of August was reliable as an

important predictor.
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Fig. 1. Performance of Random forest in national
mean rice yield of South Korea with train data
(1991-2005).
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Fig. 2. Time series comparison between observed rice yield and predicted rice yield in South Korea from

1991 to 2005.
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Fig. 3. Variable importance plot from Random Forest in rice prediction with train data (1991-2005). Max
temp: Monthly mean temperature, Mean temp: Monthly mean temperature, Min temp: Monthly minimum
temperature, Mean sh: Monthly mean sunshine hour. %IncMSE: mean square error, the higher %IncMSE

is more important.
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Fig. 4. Partial dependence plots for the top ranked predictor variable, year, from variable importance measures
of Random Forests models with train data (1991-2005).

However, sunshine hour of August and September
were less important predictors compared to that of
other seasons. This was not in agreement with the
findings of empirical research (Yun et al, 2013).
Moreover, the partial dependence plot with year as
the variable showed that milled rice yield in South
Korea was remarkably increased between 1995 and
1998 (Fig. 4). However, this increase in yield for the

3 years could not be explained by the technical or

social factors. Even though random forest showed
good prediction performance, this model could not
be applied to practical prediction because of

insufficient  reasonable  explanation for the
relationship between predictor and yield.
Improvement of the reliability of random forest
prediction required that the trend in time series data
should be removed. The commonly used detrend

method involves the application of the moving
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Fig. 5. Observed yield and 10-year moving average, 5-year moving average and
3-year moving average of National mean yield in South Korea.

average. The optimum moving average was selected
by conducting random forest prediction by using 3
moving averages: obtained over 3, 5, and 10 years.
Each trend line of moving average is shown in Figure
5, and the statistical comparisons after detrending are
shown in Table 1. The results indicated that the
moving average of 3-, 5-, and 10-year data showed
similar performance. Thus, these moving averages
could be used for yield prediction. However, the
moving average of 10 years was more suitable
because of smoothing without fluctuation (Fig. 5).
The social and technical factors were considered in
the trend line. If these are not considered, yield
change could be expected by only climate factors,
and more precise information regarding the
relationship between climate factors and rice yield

could be obtained.

Table 1. Comparison of model predictive performance
when trend is removed by using the moving average

R

10-year 2.5 0.84 0.95
S-year 2.8 0.80 0.93
3-year 2.4 0.85 0.94

The variable importance plot from random forest
prediction after detrending yield data is shown in
Figure 6. The maximum and average temperatures in
August, the maximum temperature in September, and
the mean sunshine hour in July were high-ranked
values. Moreover, the sunshine hour in September
and August was in a higher position than that shown
in Figure 3. In Korea, August and September
correspond to the heading and grain filling periods,
respectively, and climate conditions in these months
are more important than those in other seasons in
South Korea for rice yield (Yun et al., 2013). Thus,
random forest with detrended yield data could be
more reliable for further prediction.

Rice yield prediction with random forest after
detrending yield data was validated using the remnant
set (from 2006 to 2015) as the test set (Fig. 7 and
Fig. 8). Interestingly, the prediction of test set was
significantly different from that of the observed yield.
The model efficiency parameter, EF was 0.004, and
Willmott’s d was also only 0.45 (Fig. 7). In the
training set, random forest prediction with climate
factor after detrending rice yield was found to be an
empirically reasonable approach. However, validation
with test set revealed that the accurate rice yield
prediction with random forest could not be achieved
using the previously described approach.
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Fig. 7. Time series comparison between observed rice yield and predicted rice yield in South Korea with

train data (1991-2005) and test data (2006-2015).

The reason for the low prediction performance in
the test set was determined by obtaining and
comparing the variable importance plots of the
training set (1991-2005) and test set (2006-2015; Fig. 9).

The importance of each variable was significantly
different.

training set were sunshine hour in July, mean/maximum

The important climatic factors in the

temperature in August, and maximum temperature in

September. However, minimum temperature in

August and September and sunshine hour in October
were important in the test set. This difference can
be explained by several reasons. First, this might be
caused by the insufficient removal of trend biases in
the time series data. Various subspecies could cause
response fluctuation in climatic factors, since two
subspecies of rice, japonica and indica-japonica
hybrid, are cultivated at the same time in South

Korea, and their response to climate would be
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Fig. 8. Performance of Random forest in national
mean rice yield of South Korea with test year
(2006-2015).

different (Ahn, 1973). However, japonica rice has
the 1980’s.

Therefore, various responses to climatic factors by

been dominantly cultivated since
the different subspecies were not expected. Another

reason for rice response changes to climatic
conditions could be the moving of rice cropping
Since 2006, Rural

Development Administration (RDA) in South Korea

season by climate changes.

recommended farmers to delay the rice transplanting
date up to maximum of 15 days according to the sites.
If the recommended transplanting date of RDA was
generalized among farmers, the difference in the
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importance of these variables between the training
and test sets could be explained. A previous study
showed successful yield prediction by using the
random forest approach at various sites and in
different crops, because they used the data from sites
with consistent conditions, for example, planting date
(Jeong et al., 2016). If the cultivation conditions such
as planting or transplanting date were changed,
precise prediction could be obtained only from
specific time periods having consistent condition.
Therefore, even if local climate data and local yield
data are available, predicting yield using random
forest would be difficult when the seeding date is
not constant.

In this study, the prediction performance with
random forest was evaluated to predict the national
mean milled rice yield by using the national mean
climatic factors. This approach was improved by
systematically eliminating the trend of time series
data. Although a previous study (Jeong et al., 2016)
showed successful prediction by using random forest
for various sites and crops, our results were not in
agreement those results. The results of variable
importance plot in this study showed significant
difference in the importance of climate factors
between the training and test sets. This could be
because of the change in the transplanting date, which
might affect the growing season and yield. Thus,

acceptable prediction could be achieved when the
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Fig. 9. Variable importance comparison between train set (1991-2005) and test set (2006-2016).
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data set with consistent planting or transplanting date

was used.
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