• 제목/요약/키워드: Prediction Weight MAP

검색결과 13건 처리시간 0.026초

Weight of Evidence를 활용한 성폭력 범죄 위험의 확률적 예측 (Probabilistic Prediction of the Risk of Sexual Crimes Using Weight of Evidence)

  • 김보은;김영훈
    • 한국지리정보학회지
    • /
    • 제22권4호
    • /
    • pp.72-85
    • /
    • 2019
  • 본 연구는 일상생활 가운데 누구나 겪을 수 있는 성폭력 범죄 위험의 예측을 목적으로 한다. 2011-2015년 5년 간 청주시 일부 지역에서 발생한 성폭력 범죄를 대상으로 베이지안 통계 기반의 Weight of Evidence를 적용·분석하였다. Weight of Evidence를 활용하여 분석한 결과 첫째, 투입된 관련요인(Evidence) 총 26개 중 주거용도면적, 건축물 사용승인일, 개별주택가격, 용적률, 지하층 수, 대지면적, 보안등, 오락시설 8개만이 신뢰도를 만족하여 각각의 가중치(Weight)가 산출되었다. 둘째, 가중치가 산출된 8개의 관련요인을 결합하여 최종적으로 예측 지도를 도출하였다. 성폭력 범죄가 발생할 위험이 75.5%인 지역은 대상지역 전체면적의 20.7%(2.0㎢)를 차지하였으며 16.5% 지역은 3.3%(0.3㎢), 34.5% 지역은 19.0%(1.8㎢)로 나타났다. 본 연구는 성폭력 범죄 위험의 발생 확률과 이를 감소시킬 수 있는 환경적 요인 또는 조건을 도출하였다. 이와 같은 결과는 경찰의 범죄예방 활동 등 성폭력 범죄 피해 최소화를 위한 선제적 대응방안 마련의 기초자료로서 활용될 수 있을 것이다.

SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구 (Acoustic Study of light weight insulation system on Dash using SEA technique)

  • 임효석;박광서;김영호;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

Weight of Evidence 기법을 이용한 영남지역의 산지습지 가능지역 추출 (Potential Mapping of Mountainous Wetlands using Weights of Evidence Model in Yeongnam Area, Korea)

  • 백승균;장동호
    • 한국지형학회지
    • /
    • 제20권1호
    • /
    • pp.21-33
    • /
    • 2013
  • 이 연구에서는 접근이 어렵고 범위가 광대하여 많은 시간과 비용이 소요되는 산지습지의 현장조사 대상범위를 줄이고 작업의 효율성을 높이기 위해 산지 습지 위치와 지형 및 기타 GIS 정보 사이의 관계를 확률로 표현하는 Weight of Evidence 기법을 적용하여 산지습지 가능지역을 추출하였다. 이를 위하여 영남지역을 대상으로 산지습지와 관련된 경사 분포, 곡률 분포, 식생지수 분포, 습윤지수 분포, 토양 배수등급 분포 등 공간 데이터베이스를 구축하고 이를 기존 산지습지 위치와의 상관관계를 통하여 Weight of Evidence를 구하였다. 우도비를 통하여 산지습지 가능성에 대한 각 요인의 등급을 분석한 결과 경사도, 곡률, 식생지수, 습윤지수가 낮을수록, 토양 배수등급이 양호한 곳에 산지습지 분포 가능성이 높은 것으로 나타났다. 산지습지가능성도 작성을 위하여 각 요인의 등급에 대하여 Weight of Evidence 가중치를 부여하고 GIS 중첩분석을 실시하여 산지습지가능지수를 산출하였다. 그리고 검증을 위하여 산지습지 가능지수 등급구간에 대한 산지습지 위치 포함 누적비율을 표시한 성공확률곡선을 작성하고 면적비율을 계산한 결과 75.48%로서 상당히 높은 예측정확도를 나타내었다.

로지스틱회귀분석기법과 인공신경망기법을 이용한 제주지역 산사태가능성분석 (The Landslide Probability Analysis using Logistic Regression Analysis and Artificial Neural Network Methods in Jeju)

  • 권혁춘;이병걸;이창선;고정우
    • 대한공간정보학회지
    • /
    • 제19권3호
    • /
    • pp.33-40
    • /
    • 2011
  • 본 연구에서는 제주지역의 산사태가능성을 분석하기 위하여 사람의 발길이 많은 사라봉, 별도봉 지역과 송악산 지역의 지형 및 토질공학적 사면 붕괴 유발 인자들을 이용하여 로지스틱회귀분석기법과 인공신경망기법을 GIS기법과 결합하여 예측지도를 작성하고 비교분석하였다. 산사태 예측지도를 작성하기 위해서 산사태 발생에 영향을 주는 사면경사, 고도, 건조밀도, 투수계수, 간극율을 선택하였으며 선정된 지역을 대상으로 실시한 야외조사와 토양물성시험 결과를 정리한 후 이를 토대로 GIS기법을 적용하여 각 레이어별 주제도를 작성하였다. 생성된 주제도를 각각 로지스틱회귀분석기법과 인공신경망기법으로 작성하여 비교분석한 결과 사면경사와 간극율의 경중률이 가장 높게 나타났고, 예측지도는 로지스틱회귀분석기법이 더욱 정확한 결과를 나타내었으며, 도로변과 산책로를 중심으로 산사태 발생가능성이 높게 분포하고 있음을 알 수 있었다.

라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법 (Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map)

  • 최한솔;이종석;심동규
    • 방송공학회논문지
    • /
    • 제26권3호
    • /
    • pp.283-295
    • /
    • 2021
  • 본 논문은 자기 조직화 지도 기법을 기반으로 라이다 기반으로 생성된 깊이 맵과 컬러 이미지의 정보를 기반으로 고밀도 깊이 맵을 생성하는 방법을 제안한다. 제안하는 깊이 맵 업샘플링 방법은 라이다에서 취득되지 않은 공간에 대한 초기 깊이 예측 단계와 초기 깊이 필터링 단계로 구성된다. 초기 깊이 예측 단계에서는 두 장의 컬러 이미지에 대해 스테레오 매칭을 수행하여 초기 깊이 값을 예측한다. 깊이 맵 필터링 단계에서는 예측된 초기 깊이 값의 오차를 감소시키고자 예측 깊이 픽셀에 대하여 주변의 실측 깊이 값을 이용하여 자기 조직화 지도 기법을 수행한다. 자기 조직화 기법 수행 시 예측 깊이 픽셀과 실측 깊이 픽셀의 거리와, 각 픽셀에 대응되는 컬러 값의 차이에 따라 가중치를 결정한다. 본 논문에서는 성능 비교를 위하여 깊이 맵 업샘플링 방법으로 널리 사용되고 있는 양방향 필터 및 k-최근접 이웃 알고리즘과 비교를 진행하였다. 제안하는 방법은 양방향 필터 방법 및 k-최근접 이웃 알고리즘 대비 MAE 관점에서 각각 약 6.4%, 8.6%이 감소하였고 RMSE 관점에서 각각 약 10.8%, 14.3%이 감소하였다.

무선 센서네트워크에서 동적 예비 클러스터 헤드를 이용한 효율적인 토폴로지 관리 방안에 관한 연구 (A Dynamic Pre-Cluster Head Algorithm for Topology Management in Wireless Sensor Networks)

  • 김재현;이재용;김석규;도윤미;박노성
    • 한국통신학회논문지
    • /
    • 제31권6B호
    • /
    • pp.534-543
    • /
    • 2006
  • 무선 애드 혹/센서 네트워크에서 제안된 일반적인 클러스터링 기반의 계층적 토폴로지 관리 기법들은 빈번한 토폴로지 변화에 따라 자주 클러스터링을 재구성하게 되고 네트워크 관리에 필요한 오버헤드가 증가하게 된다. 본 논문에서는 이러한 재클러스터링 문제와 부하 분산을 위하여 동적 예비 클러스터 헤드 기법을 사용하는 멀티 흡클러스터링 알고리즘을 제안한다. 제안하는 기법은 이동성과 전원 레벨로 구성된 가중치 맵을 사용하여 예비 클러스터 헤드를 선출하고 멀티 홉 클러스터를 구성한다. 클러스터 헤드는 이러한 가중치 맵과 임계값을 사용하여 헤드의 역할을 예비 클러스터 헤드에게 넘겨주게 된다. 실험결과, 제안하는 알고리즘이 네트워크의 오버헤드를 줄이고 부하 분산을 제공하며, 토폴로지 변화에 무관하게 적절한 클러스터와 멤버를 관리할 수 있음을 확인하였다.

지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석 (Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area)

  • 이사로;오현주;민경덕
    • Spatial Information Research
    • /
    • 제14권1호
    • /
    • pp.129-150
    • /
    • 2006
  • 본 연구에서는 GIS 및 확률 기법을 이용하여 광상의 위치와 지질, 지화학 및 지구물리 자료들 간의 상관관계를 분석하고, 광상부존가능도(Mineral potential map) 작성 및 검증을 수행하였다. 연구지역은 1:25만 강릉도폭지역 a이며, 구축된 데이터베이스 자료는 1:25만 광상분포도, 지화학도, 지질도, 부우게 중력이상도, 자력이상도이다. 본 연구에 사용된 광상은 퇴적기원의 비금속광상(고령토, 도석, 규석, 운모, 연옥, 석회석, 납석)이다. 원소별 지화학도 작성은 채취된 각 시료 3,595개의 원소별 분석치를 이용하여 IDW 보간법으로 만들었다. 구축된 지화학도는 Al, Alkalinity, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, W, Zn, $Cl^-,\;F^-,\;{NO_2}^-,\;{NO_3}^-,\;{PO_4}^{3-},\;{SO_4}^{2-}$, pH, Eh 및 Conductivity로 총 32개이다. 이러한 광상과 관련 요인들 간의 상관관계는 확률기법인 weight of evidence를 적용하여 계산하였고, 이를 바탕으로 광상부존가능도를 작성하였다. 광상부존가능도는 wieght of evidence의 W+와 W- 값을 GIS 중첩분석에 적용하여 작성하였다. 계산된 광상부존가능지수는 기존 광상부존가능성을 정량적으로 설명하고 표현하며 검증할 수 있는 값이다. 각 기법을 이용하여 작성한 광상부존가능도의 검증결과는 85.66%의 정확도를 나타내었다.

  • PDF

항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석 (Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks)

  • 오현주
    • 대한원격탐사학회지
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 2010
  • 본 연구의 목적은 2006년 태풍 에위니아, 빌리스, 개미와 집중호우로 인해 많은 산사태가 발생한 진부면 지역을 대상으로 항공사진을 이용한 산사태 탐지 및 인공신경망과 GIS를 이용한 산사태 취약성을 분석하는데 있다. 산사태 위치는 산사태 발생 전후의 항공사진을 판독 후 현장에서 확인하였다. 취약성 분석을 위해 지형, 지질, 토양, 임상, 선구조, 토지이용도 등의 자료는 공간 데이터베이스로 구축하였다. 산사태와 관련 요인들간의 상대적 가중치는 인공신경망의 역전파 알고리즘을 이용하여 결정하였다. 그 결과 경사방향과 경사는 다른 요인들 보다 1.2~1.5배 높게 나타났다. 이 가중치를 이용하여 취약성도를 작성 후 분석에 사용하지 않은 산사태 위치와 비교하여 검증하였다. 그 결과 예측 정확도는 81.44%로 나타났다.

병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구 (Runtime Prediction Based on Workload-Aware Clustering)

  • 김은혜;박주원
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.

A Comparative Assessment of the Efficacy of Frequency Ratio, Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy in Landslide Susceptibility Mapping

  • Park, Soyoung;Kim, Jinsoo
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.67-81
    • /
    • 2020
  • The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.