• Title/Summary/Keyword: Prediction System

Search Result 6,595, Processing Time 0.07 seconds

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

On the Study of Perfect Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1151-1160
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Life Analysis of Relays based on Life Prediction Method (수명예측 방법에 따른 계전기의 수명분석)

  • Shin, Kun-Young;Lee, Duk-Gyu;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.115-120
    • /
    • 2012
  • In order to establish preventive maintenance standards through analysis & reliability prediction of about 60,000pcs of 20kindsof relays and contractors used for Seoul subway trains, several life prediction methodologies were applied. Firstly, Occurrence, Severity, Detection were defined and predicted by applying operation characteristic of EMU to the number of actions of relays & contactors which the manufacturers generally offer as the life cycle data. Secondly, failure distribution and average life of parts were analyzed through interpretation of field data based on a lot of experience which had built up in the field for a long time. Finally, using the 217PLUS standard as a reliability prediction program, comparative analysis of use reliability and inherent reliability was done through reliability prediction at the part level and system level.

A Study on Flood Prediction without Rainfall Data (강우 데이터를 쓰지 않는 홍수예측법에 관한 연구)

  • 김치홍
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

Study on the Demand Prediction for Transportation System Utilizing Data Granulization (Data Granulization을 이용한 수송수요예측에 관한 연구)

  • 이덕규;홍태화;김학배;우광방
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.211-218
    • /
    • 1998
  • The demand prediction becomes an essential mean to utilize efficiently finite traffic facilities and to provide the optimized schedules for transportation system. The demand prediction is one of the critical complex management schemes for distibuting resources of transportation service by means of computer system. The construction of a prediction model is based on data granulization, followed by processing the raw input data and evaluating the predicted output values. A large number of economic-social parameters are also to be implemented in conventional prediction models which are only based on a sequence of past data. The proposed prediction models are classified by static and dynamic characteristics and its performances are evaluated utilizing computer simulation.

  • PDF

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

Forecasting Ozone Concentration with Decision Support System (의사 결정 구조에 의한 오존 농도예측)

  • 김재용;김태헌;김성신;이종범;김신도;김용국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.368-368
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Since the mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, modeling of ozone prediction system has many problems and results of prediction are not good performance so far. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

A UPnP A/V Multimedia System using Prediction of Mobility for Mobile User (이동하는 사용자를 위한 이동성 예측을 이용하는 UPnP A/V 멀티미디어 시스템)

  • Kim, Kyung-Deok;Jung, E-Gun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1509-1520
    • /
    • 2009
  • Contrary to ubiquitous environments, indoor computing environments like home network doesn't support user mobility. This paper suggests UPnP A/V multimedia system using prediction of mobility for adaption of seamless multimedia service. The multimedia system enables indoor mobile users to play multimedia contents by transferring the current session to an adjacent device automatically. The system represents users' contextual information by Five Ws and One H model, and predicts user's movements by using contextual information and transitions of locations. The prediction basically includes multiple locations so that it improves accuracy of prediction. We evaluated the suggested system using in accuracy of prediction, time for prediction, handover time for service, and the system showed that adapt ion of seamless multimedia service was enabled by using prediction of mobility on mobile user.

  • PDF

The research of new algorithm to improve prediction accuracy of recommender system in electronic commercey

  • Kim, Sun-Ok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.185-194
    • /
    • 2010
  • In recommender systems which are used widely at e-commerce, collaborative filtering needs the information of user-ratings and neighbor user-ratings. These are an important value for recommendation in recommender systems. We investigate the in-formation of rating in NBCFA (neighbor Based Collaborative Filtering Algorithm), we suggest new algorithm that improve prediction accuracy of recommender system. After we analyze relations between two variable and Error Value (EV), we suggest new algorithm and apply it to fitted line. This fitted line uses Least Squares Method (LSM) in Exploratory Data Analysis (EDA). To compute the prediction value of new algorithm, the fitted line is applied to experimental data with fitted function. In order to confirm prediction accuracy of new algorithm, we applied new algorithm to increased sparsity data and total data. As a result of study, the prediction accuracy of recommender system in the new algorithm was more improved than current algorithm.