• Title/Summary/Keyword: Prediction Algorithms

Search Result 1,014, Processing Time 0.024 seconds

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Prediction of Potential Habitat of Japanese evergreen oak (Quercus acuta Thunb.) Considering Dispersal Ability Under Climate Change (분산 능력을 고려한 기후변화에 따른 붉가시나무의 잠재서식지 분포변화 예측연구)

  • Shin, Man-Seok;Seo, Changwan;Park, Seon-Uk;Hong, Seung-Bum;Kim, Jin-Yong;Jeon, Ja-Young;Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.291-306
    • /
    • 2018
  • This study was designed to predict potential habitat of Japanese evergreen oak (Quercus acuta Thunb.) in Korean Peninsula considering its dispersal ability under climate change. We used a species distribution model (SDM) based on the current species distribution and climatic variables. To reduce the uncertainty of the SDM, we applied nine single-model algorithms and the pre-evaluation weighted ensemble method. Two representative concentration pathways (RCP 4.5 and 8.5) were used to simulate the distribution of Japanese evergreen oak in 2050 and 2070. The final future potential habitat was determined by considering whether it will be dispersed from the current habitat. The dispersal ability was determined using the Migclim by applying three coefficient values (${\theta}=-0.005$, ${\theta}=-0.001$ and ${\theta}=-0.0005$) to the dispersal-limited function and unlimited case. All the projections revealed potential habitat of Japanese evergreen oak will be increased in Korean Peninsula except the RCP 4.5 in 2050. However, the future potential habitat of Japanese evergreen oak was found to be limited considering the dispersal ability of this species. Therefore, estimation of dispersal ability is required to understand the effect of climate change and habitat distribution of the species.

Hexagon-shape Line Search Algorithm for Fast Motion Estimation on Media Processor (미디어프로세서 상의 고속 움직임 탐색을 위한 Hexagon 모양 라인 탐색 알고리즘)

  • Jung Bong-Soo;Jeon Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.55-65
    • /
    • 2006
  • Most of fast block motion estimation algorithms reported so far in literatures aim to reduce the computation in terms of the number of search points, thus do not fit well with multimedia processors due to their irregular data flow. For multimedia processors, proper reuse of data is more important than reducing number of absolute difference operations because the execution cycle performance strongly depends on the number of off-chip memory access. Therefore, in this paper, we propose a Hexagon-shape line search (HEXSLS) algorithm using line search pattern which can increase data reuse from on-chip local buffer, and check sub-sampling points in line search pattern to reduce unnecessary SAD operation. Our experimental results show that the prediction error (MAE) performance of the proposed HEXSLS is similar to that of the full search block matching algorithm (FSBMA), while compared with the hexagon-based search (HEXBS), the HEXSLS outperforms. Also the proposed HEXSLS requires much lesser off-chip memory access than the conventional fast motion estimation algorithm such as the hexagon-based search (HEXBS) and the predictive line search (PLS). As a result, the proposed HEXSLS algorithm requires smaller number of execution cycles on media processor.

Estimating Stability Indices from the MODIS Infrared Measurements over the Korean Peninsula (MODIS 적외 자료를 이용한 한반도 지역의 대기 안정도 지수 산출)

  • Park, Sung-Hee;Chung, Eui-Seok;Koenig, Marianne;Sohn, B.J.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.469-483
    • /
    • 2006
  • An algorithm was developed to estimate stability indices (SI) over the Korean peninsula using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) infrared brightness temperatures (TBs). The SI is defined as the stability of the atmosphere in the hydrostatic equilibrium with respect to the vertical displacements and is used as an index for the potential severe storm development. Using atmosphere temperature and moisture profiles from Regional Data Assimilation and Prediction System (RDAPS) as initial guess data for a nonlinear physical relaxation method, K index (KI), KO Index (KO), lifted index (LI), and maximum buoyancy (MB) were estimated. A fast radiative transfer model, RTTOV-7, is utilized for reducing the computational burden related to the physical relaxation method. The estimated TBs from the radiative transfer simulation are in good agreement with observed MODIS TBs. To test usefulness for the short-term forecast of severe storms, the algorithm is applied to the rapidly developed convective storms. Compared with the SIs from the RDAPS forecasts and NASA products, the MODIS SI obtained in this research predicts the instability better over the pre-convection areas. Thus, it is expected that the nowcasting and short-term forecast can be improved by utilizing the algorithms developed in this study.

Classification Modeling for Predicting Medical Subjects using Patients' Subjective Symptom Text (환자의 주관적 증상 텍스트에 대한 진료과목 분류 모델 구축)

  • Lee, Seohee;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • In the field of medical artificial intelligence, there have been a lot of researches on disease prediction and classification algorithms that can help doctors judge, but relatively less interested in artificial intelligence that can help medical consumers acquire and judge information. The fact that more than 150,000 questions have been asked about which hospital to go over the past year in NAVER portal will be a testament to the need to provide medical information suitable for medical consumers. Therefore, in this study, we wanted to establish a classification model that classifies 8 medical subjects for symptom text directly described by patients which was collected from NAVER portal to help consumers choose appropriate medical subjects for their symptoms. In order to ensure the validity of the data involving patients' subject matter, we conducted similarity measurements between objective symptom text (typical symptoms by medical subjects organized by the Seoul Emergency Medical Information Center) and subjective symptoms (NAVER data). Similarity measurements demonstrated that if the two texts were symptoms of the same medical subject, they had relatively higher similarity than symptomatic texts from different medical subjects. Following the above procedure, the classification model was constructed using a ridge regression model for subjective symptom text that obtained validity, resulting in an accuracy of 0.73.

A Study on the Forecasting Trend of Apartment Prices: Focusing on Government Policy, Economy, Supply and Demand Characteristics (아파트 매매가 추이 예측에 관한 연구: 정부 정책, 경제, 수요·공급 속성을 중심으로)

  • Lee, Jung-Mok;Choi, Su An;Yu, Su-Han;Kim, Seonghun;Kim, Tae-Jun;Yu, Jong-Pil
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.91-113
    • /
    • 2021
  • Despite the influence of real estate in the Korean asset market, it is not easy to predict market trends, and among them, apartments are not easy to predict because they are both residential spaces and contain investment properties. Factors affecting apartment prices vary and regional characteristics should also be considered. This study was conducted to compare the factors and characteristics that affect apartment prices in Seoul as a whole, 3 Gangnam districts, Nowon, Dobong, Gangbuk, Geumcheon, Gwanak and Guro districts and to understand the possibility of price prediction based on this. The analysis used machine learning algorithms such as neural networks, CHAID, linear regression, and random forests. The most important factor affecting the average selling price of all apartments in Seoul was the government's policy element, and easing policies such as easing transaction regulations and easing financial regulations were highly influential. In the case of the three Gangnam districts, the policy influence was low, and in the case of Gangnam-gu District, housing supply was the most important factor. On the other hand, 6 mid-lower-level districts saw government policies act as important variables and were commonly influenced by financial regulatory policies.

A Study on the Radiometric Correction of Sentinel-1 HV Data for Arctic Sea Ice Detection (북극해 해빙 탐지를 위한 Sentinel-1 HV자료의 방사보정 연구)

  • Kim, Yunjee;Kim, Duk-jin;Kwon, Ui-Jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1273-1282
    • /
    • 2018
  • Recently, active research on the Arctic Ocean has been conducted due to the influence of global warming and new Arctic ship route. Although previous studies already calculated quantitative extent of sea ice using passive microwave radiometers, melting at the edge of sea ice and surface roughness were hardly considered due to low spatial resolution. Since Sentienl-1A/B data in Extended Wide (EW) mode are being distributed as free of charge and bulk data for Arctic sea can be generated during a short period, the entire Arctic sea ice data can be covered in high spatial resolution by mosaicking bulk data. However, Sentinel-1A/B data in EW mode, especially in HV polarization, needs significant radiometric correction for further classification. Thus, in this study, we developed algorithms that can correct thermal noise and scalloping effects, and confirmed that Arctic sea ice and open-water were well classified using the corrected dual-polarization SAR data.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.