• Title/Summary/Keyword: Prediction Accuracy

Search Result 3,787, Processing Time 0.036 seconds

Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology (Box-Jenkins 모형을 이용한 표고버섯 가격예측)

  • Min, Kyung-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.778-783
    • /
    • 2006
  • Price prediction is essential to decisions of investment and shipment in oak mushroom cultivation. But predicting the prices of oak mushroom is very difficult because there are so many uncertain factors affecting the demand and the supply in the market. The Box-Jenkins methodology is one of strong tools in price prediction especially for the short-term using historical observations of time series. In this paper, the Box-Jenkins methodology is applied to find a model to forecast future oak mushroom prices. And out-of-sample test was conducted to check out the prediction accuracy. The result shows the high accuracy except for market disturbance period affected by unexpected weather change and reveals the usefulness of the model.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Software Vulnerability Prediction System Using Neural Network (신경망을 이용한 소프트웨어 취약 여부 예측 시스템)

  • Choi, Minjun;Koo, Dongyoung;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.557-564
    • /
    • 2019
  • As the number and type of software increases, those security vulnerabilities are also increasing. Various types of software may have multiple vulnerabilities and those vulnerabilities as they can cause irrecoverable significant damage must be detected and deleted quickly. Various studies have been carried out to detect the vulnerability of the current software, but it is slow, and prediction accuracy is low. Therefore, in this paper, we describe a method to efficiently predict software vulnerability by using neural network algorithm and compare prediction accuracy with conventional system using machine learning algorithm. As a result of the experiment, the prediction system proposed in this paper showed the highest prediction rate.

Particulate Matter AQI Index Prediction using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 미세먼지 AQI 지수 예측)

  • Cho, Kyoung-woo;Lee, Jong-sung;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.540-542
    • /
    • 2019
  • With many announcements on air pollution and human effects from particulate matters, particulate matter forecasts are attracting a lot of public attention. As a result, various efforts have been made to increase the accuracy of particulate matter forecasting by using statistical modeling and machine learning technique. In this paper, the particulate matter AQI index prediction is performed using the multilayer perceptron neural network for particulate matter prediction. For this purpose, a prediction model is designed by using the meteorological factors and particulate matter concentration values commonly used in a number of studies, and the accuracy of the particulate matter AQI prediction is compared.

  • PDF

Short-Term Prediction Model of Postal Parcel Traffic based on Self-Similarity (자기 유사성 기반 소포우편 단기 물동량 예측모형 연구)

  • Kim, Eunhye;Jung, Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.76-83
    • /
    • 2020
  • Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.

Comparison of Performance of LSTM and EEMD based PM10 Prediction Model (LSTM과 EEMD 기반의 미세먼지 농도 예측 모델 성능 비교)

  • Jung, Yong-jin;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.510-512
    • /
    • 2022
  • Various studies are being conducted to improve the accuracy of fine dust, but there is a problem that deep learning models are not well learned due to various characteristics according to the concentration of fine dust. This paper proposes an EEMD-based fine dust concentration prediction model to decompose the characteristics of fine dust concentration and reflect the characteristics. After decomposing the fine dust concentration through EEMD, the final fine dust concentration value is derived by ensemble of the prediction results according to the characteristics derived from each. As a result of the model's performance evaluation, 91.7% of the fine dust concentration prediction accuracy was confirmed.

  • PDF

Particular Matter Concentration Prediction Models Based on EEMD (EEMD 기반의 미세먼지 농도 예측 모델)

  • Jung, Yong-jin;Lee, Jong-sung;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.345-347
    • /
    • 2021
  • Various studies are being conducted to improve the accuracy of fine dust, but there is a problem that deep learning models are not well learned due to various characteristics according to the concentration of fine dust. This paper proposes an EEMD-based fine dust concentration prediction model to decompose the characteristics of fine dust concentration and reflect the characteristics. After decomposing the fine dust concentration through EEMD, the final fine dust concentration value is derived by ensemble of the prediction results according to the characteristics derived from each. As a result of the model's performance evaluation, 91.7% of the fine dust concentration prediction accuracy was confirmed.

  • PDF

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

A Study on the Insolvency Prediction Model for Korean Shipping Companies

  • Myoung-Hee Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2024
  • To develop a shipping company insolvency prediction model, we sampled shipping companies that closed between 2005 and 2023. In addition, a closed company and a normal company with similar asset size were selected as a paired sample. For this study, data of a total of 82 companies, including 42 closed companies and 42 general companies, were obtained. These data were randomly divided into a training set (2/3 of data) and a testing set (1/3 of data). Training data were used to develop the model while test data were used to measure the accuracy of the model. In this study, a prediction model for Korean shipping insolvency was developed using financial ratio variables frequently used in previous studies. First, using the LASSO technique, main variables out of 24 independent variables were reduced to 9. Next, we set insolvent companies to 1 and normal companies to 0 and fitted logistic regression, LDA and QDA model. As a result, the accuracy of the prediction model was 82.14% for the QDA model, 78.57% for the logistic regression model, and 75.00% for the LDA model. In addition, variables 'Current ratio', 'Interest expenses to sales', 'Total assets turnover', and 'Operating income to sales' were analyzed as major variables affecting corporate insolvency.