The Journal of Asian Finance, Economics and Business
/
v.7
no.11
/
pp.469-477
/
2020
The main objective of this paper is to examine the applicability of Linan and Chen's entrepreneurial intention model (EIM) in predicting the entrepreneurial intention. EIM is an adaptation of the Theory of Planned Behavior that focuses on entrepreneurial intention and hypothesizing slightly different patterns of relationship with regards to subjective norms. The model also includes human capital and demographic factors. Snowball sampling method was used to collect data using the entrepreneurial intention questionnaire (EIQ) through several social media platforms. The survey indicates that the overall entrepreneurial intention of Saudi students is high (mean = 5.41). Eight out of the seventeen hypothesized relationships were found to be significant. Among the demographic variables, gender-personal attitude was significant whereas self employment experience and years of business education were found to be significantly related with perceived behavioral control. The statistical analysis using partial least square structural equation modelling validated the model. All the three antecedents of entrepreneurial intention were significantly related with entrepreneurial intention. The results of this study will help policy makers to get deep understanding into the phenomenon of entrepreneurship among Saudi university students and thereby develop a conducive environment. This study also validates the entrepreneurial intention model in a different cultural context.
Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
Journal of Ginseng Research
/
v.37
no.2
/
pp.227-247
/
2013
MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.
Kim, Daehyun;Millington, Andrew C.;Lafon, Charles W.
Journal of Ecology and Environment
/
v.43
no.4
/
pp.364-375
/
2019
Background: Ecologists continue to investigate the factors that potentially affect the pattern and magnitude of tree damage during catastrophic windstorms in forests. However, there still is a paucity of research on which trees are more vulnerable to direct damage by winds rather than being knocked down by the fall of another tree. We evaluated this question in a mixed hardwood-softwood forest within the Big Thicket National Preserve (BTNP) of southeast Texas, USA, which was substantially impacted by Hurricane Rita in September 2005. Results: We showed that multiple factors, including tree height, shade-tolerance, height-to-diameter ratio, and neighborhood density (i.e., pre-Rita stem distribution) significantly explained the susceptibility of trees to direct storm damage. We also found that no single factor had pervasive importance over the others and, instead, that all factors were tightly intertwined in a complex way, such that they often complemented each other, and that they contributed simultaneously to the overall susceptibility to and patterns of windstorm damage in the BTNP. Conclusions: Directly damaged trees greatly influence the forest by causing secondary damage to other trees. We propose that directly and indirectly damaged (or susceptible) trees should be considered separately when assessing or predicting the impact of windstorms on a forest ecosystem; to better predict the pathways of community structure reorganization and guide forest management and conservation practices. Forest managers are recommended to adopt a holistic view that considers and combines various components of the forest ecosystem when establishing strategies for mitigating the impact of catastrophic winds.
This study explored how Korean immigrants education, length of stay and English fluency affect their political socialization, mediated through traditional news media and the news Web use. Political socialization included political knowledge, interest, and participation. The media usage patterns included U.S. news media, U.S. news Web, Korean news Web, and Korean news Media use by Korean immigrants in the United State. This study found as follows. First, education, length of stay, and English fluency indirectly increased political socialization(political knowledge, interest, and participation) through their relationship with U.S. news media use. Second, U.S. news Web played a potentially important role in Korean immigrants' political socialization by increasing their political interest. Third, Korean news media partly contributed to Korean immigrants' political socialization by increasing their political interest. Fourth, Korean news Web use did not contribute to Korean immigrants' political socialization in terms of political knowledge, interest, and participation at all. In conclusion, this study found that traditional news media's role was more important than news Web's one in the process of immigrants' political socialization to the host society.
The purpose of this study is to predict the shear behavior of the weathered mudstone soil using dynamic neural network which mimics the biological system of human brain. SNN and RNN, which are kinds of the dynamic neural network realizing continuously a pattern recognition as time goes by, are used to predict a nonlinear behavior of soil. After analysis, parameters which have an effect on learning and predicting of neural network, the teaming rate, momentum constant and the optimum neural network model are decided to be 0.5, 0.7, 8$\times$18$\times$2 in SU model and 0.3, 0.9, 8$\times$24$\times$2 in R model. The results of appling both networks showed that both networks predicted the shear behavior of soil in normally consolidated state well, but RNN model which is effective fir input data of irregular patterns predicted more efficiently than SNN model in case of the prediction in overconsolidated state.
Journal of the Korean Data and Information Science Society
/
v.28
no.4
/
pp.819-829
/
2017
The aim of this study is to analyze intraday price momentum. When price trends are formed, price momentum is the phenomenon that future prices tend to follow the trend. When the market opened and closed, a U-shaped trading volume pattern in which the trading volume was concentrated was observed. In this paper, we defined price momentum as the 10 minute trend after market opening is maintained until the end of market. The strategy is to determine buying and selling in accordance with the price change in the initial 10 minutes and liquidating at closing price. In this study, the strategy was empirically analyzed by using minute data, and it showed effectiveness, indicating the presence of an intraday price momentum. A pattern in which returns are increasing at an early stage is called a J-shaped pattern. If the J-shaped pattern occurs, we have found that the price momentum phenomenon tends to be stronger than otherwise. The DTW algorithm, which is well known in the field of pattern recognition, was used for J-shaped pattern recognition and the algorithm was effective in predicting intraday price movements. This study showed that intraday price momentum exists in the KOSPI200 futures market.
This study explores the structural behavior of module joints in floating concrete structures subjected to shear. Crack patterns, shear behavior and shear capacity of shear keys in joints of concrete module were investigated. Test parameters included shear key shape, or inclination of shear keys, confining stress levels and compressive strength of concrete. Test results showed that shear strength of joints increased as shear key inclination increased. Test results also showed that shear strength of concrete module joints increased with the increase of confining stress levels. The equation for predicting shear strength of joints was suggested, which was based on the test results. Shear strength prediction by using the equation suggested in this study showed good agreement with test results.
El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
Nuclear Engineering and Technology
/
v.53
no.10
/
pp.3275-3285
/
2021
A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.
Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
Journal of Bone Metabolism
/
v.25
no.4
/
pp.251-266
/
2018
Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.
The Journal of the Convergence on Culture Technology
/
v.5
no.1
/
pp.297-303
/
2019
This study aims to investigate the characteristics, concepts, types, and strategies of unplugged coding for young children based on computing thinking. The key to unplugged coding for young children is computing thinking. Unplugged coding based on computing thinking for young children can be used to solve problems that can be encountered in everyday life through playing games based on logical thinking by positively utilizing algorithm boards, s-blocks, coding robots, and smart devices without using programs And find new ways to play. Types of unplugged coding for young children include direct input to smart devices, using coding robots with dedicated apps, practicing coding procedures using algorithms, and using hybrid methods. Strategies include understanding algorithms, drawing flowcharts, dividing into smaller parts, finding patterns, inserting, and predicting outcomes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.