• Title/Summary/Keyword: Predict of solar power generation

Search Result 41, Processing Time 0.028 seconds

High Utilization of Photovoltaic Power System in Rural Green Village Location Analysis and Evaluation using GIS - With Chubumyeon, Keumsan, Chungnam province - (GIS를 이용한 태양광 발전시스템의 활용도 높은 농촌 그린빌리지 적정입지 평가 - 충청남도 금산군 추부면을 중심으로 -)

  • Doh, Jae-Heung;Kim, Dae-Sik;Koo, Hee-Dong
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.1
    • /
    • pp.51-62
    • /
    • 2014
  • The composition of rural Green Village requires higher utilization of renewable energy in those selected rural villages. The purpose of this study is to select the best results of rural green villages when using photovoltaic power system(PV system). 10 different rural villages in Chubumyeon, Keumsan, Chungnam province, were selected as study villages. This study shows measured solar radiation data, a 20-year time series data, and GIS spatial analysis; and whose were used to predict the photovoltaic power generation. PV system is used as a form with capacity of 3kWp to use for personal and public houses. Generation data was calculated by the town, where the economics of the Green Village location analysis was performed; and the solar radiation's correction factor was calculated by the 20-year time series data and measured data by study villages. By applying to the data of DEM, slope and aspect of the study villages were found, therefore performed. Spatial analysis tools were performed by using solar radiation map's tools. Those data found were used to calculate the average needed energy every months. When used the properly calculated data, towns performed economical energy consumption in rural Green Village. Every study villages have showed very high potential for PV system. Sungdangri ranked at the first (7,401kWp/year), Jangdaeri follows behind to the second (7,203kWp/year) and Yogwangri at third (7,89kWp/year) which shows higher developed energy than other study villages. The areas covered of these three towns are as follows: Sungdangri at $33,300m^2$, Jangdaeri covers $18,000m^2$ and Yogwangri shows $46,800m^2$. With these results, analyzing the potentials using GIS spatial analysis before installation of PV system was possible. Also different villages and topography in study villages have showed various results by the area. For convenience and to shorten research time, it is possible and enough to use solar radiation tools when studying spatial analysis of solar radiation.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

Feature Vector Extraction for Solar Energy Prediction through Data Visualization and Exploratory Data Analysis (데이터 시각화 및 탐색적 데이터 분석을 통한 태양광 에너지 예측용 특징벡터 추출)

  • Jung, Wonseok;Ham, Kyung-Sun;Park, Moon-Ghu;Jeong, Young-Hwa;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.514-517
    • /
    • 2017
  • In solar photovoltaic systems, power generation is greatly affected by the weather conditions, so it is essential to predict solar energy for stable load operation. Therefore, data on weather conditions are needed as inputs to machine learning algorithms for solar energy prediction. In this paper, we use 15 kinds of weather data such as the precipitation accumulated during the 3 hours of the surface, upward and downward longwave radiation average, upward and downward shortwave radiation average, the temperature during the past 3 hours at 2 m above from the ground and temperature from the ground surface as input data to the algorithm. We analyzed the statistical characteristics and correlations of weather data and extracted the downward and upward shortwave radiation averages as a major elements of a feature vector with high correlation of 70% or more with solar energy.

  • PDF

A Dynamic Piecewise Prediction Model of Solar Insolation for Efficient Photovoltaic Systems (효율적인 태양광 발전량 예측을 위한 Dynamic Piecewise 일사량 예측 모델)

  • Yang, Dong Hun;Yeo, Na Young;Mah, Pyeongsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.632-640
    • /
    • 2017
  • Although solar insolation is the weather factor with the greatest influence on power generation in photovoltaic systems, the Meterological Agency does not provide solar insolation data for future dates. Therefore, it is essential to research prediction methods for solar insolation to efficiently manage photovoltaic systems. In this study, we propose a Dynamic Piecewise Prediction Model that can be used to predict solar insolation values for future dates based on information from the weather forecast. To improve the predictive accuracy, we dynamically divide the entire data set based on the sun altitude and cloudiness at the time of prediction. The Dynamic Piecewise Prediction Model is developed by applying a polynomial linear regression algorithm on the divided data set. To verify the performance of our proposed model, we compared our model to previous approaches. The result of the comparison shows that the proposed model is superior to previous approaches in that it produces a lower prediction error.

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

Renewable Energy Generation Prediction Model using Meteorological Big Data (기상 빅데이터를 활용한 신재생 에너지 발전량 예측 모형 연구)

  • Mi-Young Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2023
  • Renewable energy such as solar and wind power is a resource that is sensitive to weather conditions and environmental changes. Since the amount of power generated by a facility can vary depending on the installation location and structure, it is important to accurately predict the amount of power generation. Using meteorological data, a data preprocessing process based on principal component analysis was conducted to monitor the relationship between features that affect energy production prediction. In addition, in this study, the prediction was tested by reconstructing the dataset according to the sensitivity and applying it to the machine learning model. Using the proposed model, the performance of energy production prediction using random forest regression was confirmed by predicting energy production according to the meteorological environment for new and renewable energy, and comparing it with the actual production value at that time.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

Efficient Grid-Independent ESS Control System by Prediction of Energy Production Consumption (에너지 생산량 소비량 예측을 통한 효율적인 계통 독립형 ESS 제어 시스템)

  • Joo, Jong-Yul;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.155-160
    • /
    • 2019
  • In this paper, we propose an efficient grid-independent ESS control system through the control of renewable energy and agricultural ICT by utilizing the prediction of energy production and consumption. The proposed system is an integrated management system that can perform maintenance and monitoring by visualizing the accurate phase and data of power system. It can automatically cope, collect, process, and control the data. Also, it can analyze the power generation of solar power generation, consumption pattern of installed facilities, and operation trend of facilities. Further, it can predict the consumption of energy production and present the optimal energy management method by using the OpenAPI of the Korea Meteorological Administration, thereby reducing unnecessary energy consumption and operating cost.

Development of LPWA-Based Farming Environment Data Collection System and Big Data Analysis System (LPWA기반의 임산물 생육환경 수집 및 빅데이터 분석 시스템 개발)

  • Kim, Yu-Bin;Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.695-702
    • /
    • 2020
  • Recently, as research on smart farms has been actively conducted, indoor environment control, such as a green house, has reached a high level. However, In the field of forestry where cultivation is carried out in outdoor, the use of ICT is still insufficient. In this paper, we propose LPWA-based forest growth environment collection and big data analysis system using ICT technology. The proposed system collects and transmits the field cultivation environment data to the server using small solar power generation and LPWA technology based on the oneM2M architecture. The transmitted data is constructed as big data on the server and utilizes it to predict the production and quality of forest products. The proposed system is expected to contribute to the production of low-cost, high-quality crops through the fusion of renewable energy and smart farms. In addition, it can be applied to other industrial fields that utilize the oneM2M architecture and monitoring the growth environment of agricultural crops in the field.

Battery Level Calculation and Failure Prediction Algorithm for ESS Optimization and Stable Operation (ESS 최적화 및 안정적인 운영을 위한 배터리 잔량 산출 및 고장 예측 알고리즘)

  • Joo, Jong-Yul;Lee, Young-Jae;Park, Kyoung-Wook;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • In the case of power generation using renewable energy, power production may not be smooth due to the influence of the weather. The energy storage system (ESS) is used to increase the efficiency of solar and wind power generation. ESS has been continuously fired due to a lack of battery protection systems, operation management, and control system, or careless installation, leading to very big casualties and economic losses. ESS stability and battery protection system operation management technology is indispensable. In this paper, we present a battery level calculation algorithm and a failure prediction algorithm for ESS optimization and stable operation. The proposed algorithm calculates the correct battery level by accumulating the current amount in real-time when the battery is charged and discharged, and calculates the battery failure by using the voltage imbalance between battery cells. The proposed algorithms can predict the exact battery level and failure required to operate the ESS optimally. Therefore, accurate status information on ESS battery can be measured and reliably monitored to prevent large accidents.