• Title/Summary/Keyword: Predict Ratio Curve

Search Result 110, Processing Time 0.025 seconds

Strengthening of prestressed girder-deck system with partially debonding strand by the use of CFRP or steel plates: Analytical investigation

  • Haoran Ni;Riliang Li;Riyad S. Aboutaha
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This paper describes an in-depth analysis on flexural strength of a girder-deck system experiencing a strand debonding damage with various strengthening systems, based on finite element software ABAQUS. A detailed finite element analysis (FEA) model was developed and verified against the relevant experimental data performed by other researchers. The proposed analytical model showed a good agreement with experimental data. Based on the verified FE model, over a hundred girder-deck systems were investigated with the consideration of following variables: 1) debonding level, 2) span-to-depth ratio (L/d), 3) strengthening type, 4) strengthening material thickness. Based on the data above, a new detailed analytical model was developed and proposed for estimating residual flexural strength of the strand-debonding damaged girder-deck system with strengthening systems. It was demonstrated that both finite element model and analysis model could be used to predict flexural behaviors for debonding damaged prestressed girder-deck systems. Since the strands are debonding from surrounding concrete over a certain zone over the length of the beam, the increase of strain in strands can be linked with a ratio ψ, which is Lp/c. The analytical model was proposed and developed regarding the ratio ψ. By conducting procedure of calculating ψ, the ψ value varies from 9.3 to 70.1. Multiple nonlinear regression analysis was performed in Software IBM SPSS Statistics 27.0.1 to derive equation of ψ. ψ equation was curved to be an exponential function, and the independent variable (X) is a linear function in terms of three variables of debonding level (λ), span length (L), and amount of strengthening material (As). The coefficient of determinate (R2) for curve fitting in nonlinear regression analysis is 0.8768. The developed analytical model was compared to the ultimate capacities computed by FEA model.

Prediction of Tumor Progression During Neoadjuvant Chemotherapy and Survival Outcome in Patients With Triple-Negative Breast Cancer

  • Heera Yoen;Soo-Yeon Kim;Dae-Won Lee;Han-Byoel Lee;Nariya Cho
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.626-639
    • /
    • 2023
  • Objective: To investigate the association of clinical, pathologic, and magnetic resonance imaging (MRI) variables with progressive disease (PD) during neoadjuvant chemotherapy (NAC) and distant metastasis-free survival (DMFS) in patients with triple-negative breast cancer (TNBC). Materials and Methods: This single-center retrospective study included 252 women with TNBC who underwent NAC between 2010 and 2019. Clinical, pathologic, and treatment data were collected. Two radiologists analyzed the pre-NAC MRI. After random allocation to the development and validation sets in a 2:1 ratio, we developed models to predict PD and DMFS using logistic regression and Cox proportional hazard regression, respectively, and validated them. Results: Among the 252 patients (age, 48.3 ± 10.7 years; 168 in the development set; 84 in the validation set), PD was occurred in 17 patients and 9 patients in the development and validation sets, respectively. In the clinical-pathologic-MRI model, the metaplastic histology (odds ratio [OR], 8.0; P = 0.032), Ki-67 index (OR, 1.02; P = 0.044), and subcutaneous edema (OR, 30.6; P = 0.004) were independently associated with PD in the development set. The clinical-pathologic-MRI model showed a higher area under the receiver-operating characteristic curve (AUC) than the clinical-pathologic model (AUC: 0.69 vs. 0.54; P = 0.017) for predicting PD in the validation set. Distant metastases occurred in 49 patients and 18 patients in the development and validation sets, respectively. Residual disease in both the breast and lymph nodes (hazard ratio [HR], 6.0; P = 0.005) and the presence of lymphovascular invasion (HR, 3.3; P < 0.001) were independently associated with DMFS. The model consisting of these pathologic variables showed a Harrell's C-index of 0.86 in the validation set. Conclusion: The clinical-pathologic-MRI model, which considered subcutaneous edema observed using MRI, performed better than the clinical-pathologic model for predicting PD. However, MRI did not independently contribute to the prediction of DMFS.

An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear (전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구)

  • Lee, Soo-Kueon;Hong, Kap-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.65-73
    • /
    • 2000
  • The behavior of double angle connections is analyzed by 3D finite element method using ABAQUS(ver 5.8). Moment-rotation curves for the connections are generated, as well as stress distribution for angle and bolt. Double angle connections have various angle thickness, gage distance and number of bolt. Parameters, such as initial stiffness, plastic tiffness, reference load and curve shape parameter were obtained by regression method using Richard's formula. These parameter lead to predict nonlinear behavior of double angle connection. Design curves giving the parameters of the moment-rotation curves are generated. These parameters are primarily a function of the angle thickness, gage distance and the number of bolts in the connection. Using these parameters, connection moment and its ratio to the full plastic moment capacity Mp of the beam are calculated.

  • PDF

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

Development of Nutrition Screening Index for Hospitalized Patients (입원 환자 영양검색 지표 개발)

  • Kim, Su-An;Kim, So-Yeon;Sohn, Cheong-Min
    • Korean Journal of Community Nutrition
    • /
    • v.11 no.6
    • /
    • pp.779-784
    • /
    • 2006
  • Several studies about hospital malnutrition have been reported that about more than 40% of hospitalized patients are having nutritional risk factors and hospital malnutrition presents a high prevalence. People in a more severe nutritional status ended up with a longer length of hospital stay and higher hospital cost. Nutrition screening tools identify individuals who are malnourished or at risk of becoming malnourished and who may benefit from nutritional support. For the early detection and treatment of malnourished hospital patients , few valid screening instruments fur Koreans exist. Therefore, the aim of this study was to develop a simple, reliable and valid malnutrition screening tool that could be used at hospital admission to identify adult patients at risk of malnutrition using medical electrical record data. Two hundred and one patients of the university affiliated medical center were assessed on nutritional status and classified as well nourished, moderately or severely malnourished by a Patient-Generated subjective global assessment (PG-SGA) being chosen as the 'gold standard' for defining malnutrition. The combination of nutrition screening questions with the highest sensitivity and specificity at prediction PG-SGA was termed the nutrition screening index (NSI). Odd ratio, and binary logistic regression were used to predict the best nutritional status predictors. Based on regression coefficient score, albumin less than 3.5 g/dl, body mass index (BMI) less than $18.5kg/m^2$, total lymphocyte count less than 900 and age over 65 were determined as the best set of NSI. By using best nutritional predictors receiver operating characteristic curve with the area under the curve, sensitivity and 1-specificity were analyzed to determine the best optimal cut-off point to decide normal or abnormal in nutritional status. Therefore simple and beneficial NSI was developed for identifying patients with severe malnutrition. Using NSI, nutritional information of the severe malnutrition patient should be shared with physicians and they should be cared for by clinical dietitians to improve their nutritional status.

Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants (대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.18-25
    • /
    • 2016
  • Enhanced tubes are used widely in the evaporators of large tonnage compression-type refrigerators. The evaporators consist of tube bundles, and the refrigerant properties are dependent on the locations in the tube bundles. In particular, the saturation temperatures of low pressure refrigerants (R-11, R-123) are strongly dependent on the locations due to the saturation temperature-pressure curve characteristics. Therefore, for the proper design of evaporators, local property predictions of the refrigerants are necessary. In this study, a computer program that simulates the flooded refrigerant evaporators was developed. The program incorporated theoretical models to predict the refrigerant shell-side boiling heat transfer coefficients and pressure drops across the tube bundle. The program adopted an incremental iterative procedure to perform row-by-row calculations over the specified incremental tube lengths for each water-side pass. The program was used to simulate the flooded refrigerant evaporator of the "T" company operating with R-123, which yielded satisfactory results. The program was extended to predict the performance of the flooded refrigerant evaporator operating with R-11, R-123, and R-134a. The effects of bundle aspect ratio are investigated.

A Study on Wildlife Habitat Suitability Modeling for Goral (Nemorhaedus caudatus raddeanus) in Seoraksan National Park (설악산 산양을 대상으로 한 야생동물 서식지 적합성 모형에 관한 연구)

  • Seo, Chang Wan;Choi, Tae Young;Choi, Yun Soo;Kim, Dong Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.28-38
    • /
    • 2008
  • The purpose of this study are to compare existing presence-absence predictive models and to predict suitable habitat for Goral (Nemorhaedus caudatus raddeanus) that is an endangered and protected species in Seoraksan national park using the best model among existing predictive models. The methods of this study are as follows. First, 375 location data and 9 environmental data layers were implemented to build a model. Secondly, 4 existing presence-absence models : Generalized Linear Model (GLM), Generalized Addictive Model (GAM), Classification and Regression Tree (CART), and Artificial Neural Network (ANN) were tested to predict the Goal habitat. Thirdly, ROC (Receiver Operating Characteristic) and Kappa statistics were used to calculate a model performance. Lastly, we verified models and created habitat suitability maps. The ROC AUC (Area Under the Curve) and Kappa values were 0.697/0.266 (GLM), 0.729/0.313 (GAM), 0.776/0.453 (CART), and 0.858/0.559 (ANN). Therefore, ANN was selected as the best model among 4 models. The models showed that elevation, slope, and distance to stream were the significant factors for Goal habitat. The ratio of predicted area of ANN using a threshold was 31.29%, but the area decreased when human effect was considered. We need to investigate the difference of various models to build a suitable wildlife habitat model under a given condition.

A Study on the Applicability of Hyperbolic Settlement Prediction Method to Consolidation Settlement in the Dredged and Reclaimed Ground (준설매립지반의 압밀침하에 대한 쌍곡선 침하예측기법의 적용성 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.11-17
    • /
    • 2008
  • Applicability of hyperbolic settlement prediction method to consolidation settlement in the dredged and reclaimed ground was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio - effective stress - permeability and typical self-weight consolidation curves with time were obtained by analyzing centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve obtained by using Terzaghi's consolidation theory was compared with results predicted by the hyperbolic method. It was found to have its own inherent error to predict final consolidation settlement. From results of analyzing thc self-weight consolidation with time by using this method, it predicted relatively well in error range of 0.04~18% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. However, it overestimated the final settlement with large errors if those relation curves were nonlinear.

  • PDF

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.