• Title/Summary/Keyword: Precursor concentrations

Search Result 151, Processing Time 0.026 seconds

The molecular mechanism of propionate-regulating gluconeogenesis in bovine hepatocytes

  • Rui Pang;Xiao Xiao;Tiantian Mao;Jiajia Yu;Li Huang;Wei Xu;Yu Li;Wen Zhu
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1693-1699
    • /
    • 2023
  • Objective: Cows that are nursing get around 80% of their glucose from liver gluconeogenesis. Propionate, a significant precursor of liver gluconeogenesis, can regulate the key genes involved in hepatic gluconeogenesis expression, but its precise effects on the activity of enzymes have not yet been fully elucidated. Therefore, the aim of this study was to investigate the effects of propionate on the activity, gene expression, and protein abundance of the key enzymes involved in the gluconeogenesis of dairy cow hepatocytes. Methods: The hepatocytes were cultured and treated with various concentrations of sodium propionate (0, 1.25, 2.50, 3.75, and 5.00 mM) for 12 h. Glucose content in the culture media was determined by an enzymatic coloring method. The activities of gluconeogenesis related enzymes were determined by enzyme linked immunosorbent assay kits, and the levels of gene expression and protein abundance of the enzymes were detected by real-time quantitative polymerase chain reaction and Western blot, respectively. Results: Propionate supplementation considerably increased the amount of glucose in the culture medium compared to the control (p<0.05); while there was no discernible difference among the various treatment concentrations (p>0.05). The activities of cytoplasmic phosphoenolpyruvate carboxylase (PEPCK1), mitochondrial phosphoenolpyruvate carboxylase (PEPCK2), pyruvate carboxylase (PC), and glucose-6-phosphatase (G6PC) were increased with the addition of 2.50 and 3.75 mM propionate; the gene expressions and protein abundances of PEPCK1, PEPCK2, PC, and G6PC were increased by 3.75 mM propionate addition. Conclusion: Propionate encouraged glucose synthesis in bovine hepatocytes, and 3.75 mM propionate directly increased the activities, gene expressions and protein abundances of PC, PEPCK1, PEPCK2, and G6PC in bovine hepatocytes, providing a theoretical basis of propionate-regulating gluconeogenesis in bovine hepatocytes.

Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data (준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명)

  • Park, Seung-Shik;Kim, Sun-Jung;Gong, Bu-Joo;Lee, Kwon-Ho;Cho, Seog-Yeon;Kim, Jong-Choon;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

Spatio-temporal Characteristics of the Frequency of Weather Types and Analysis of the Related Air Quality in Korean Urban Areas over a Recent Decade (2007-2016) (최근 10년간(2007~2016년) 한반도 대도시 일기유형 빈도의 시·공간 특성 및 유형별 대기질 변화 분석)

  • Park, Hyeong-Sik;Song, Sang-Keun;Han, Seung-Beom;Cho, Seongbin
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1129-1140
    • /
    • 2018
  • Temporal and spatial characteristics of the frequency of several weather types and the change in air pollutant concentrations according to these weather types were analyzed over a decade (2007-2016) in seven major cities and a remote area in Korea. This analysis was performed using hourly (or daily) observed data of weather types (e.g., mist, haze, fog, precipitation, dust, and thunder and lighting) and air pollutant criteria ($PM_{10}$, $PM_{2.5}$, $O_3$, $NO_2$, CO, and $SO_2$). Overall, the most frequent weather type across all areas during the study period was found to be mist (39%), followed by precipitation (35%), haze (17%), and the other types (${\leq}4%$). In terms of regional frequency distributions, the highest frequency of haze (26%) was in Seoul (especially during winter and May-June), possibly due to the high population and air pollutant emission sources, while that of precipitation (47%) was in Jeju (summer and winter), due to its geographic location with the sea on four sides and a very high mountain. $PM_{10}$ concentrations for dust and haze were significantly higher in three cities (up to $250{\mu}g/m^3$ for dust in Incheon), whereas those for the other four types were relatively lower. The concentrations of $PM_{2.5}$ and its major precursor gases ($NO_2$ and $SO_2$) were higher (up to $69{\mu}g/m^3$, 48 ppb, and 16 ppb, respectively, for haze in Incheon) for haze and/or dust than for the other weather types. On the other hand, there were no distinct differences in the concentrations of $O_3$ and CO for the weather types. The overall results of this study confirm that the frequency of weather types and the related air quality depend on the geographic and environmental characteristics of the target areas.

Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Button Mushroom Compost

  • Oh, Sung-Hoon;Lee, Chang-Jung;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • An auxin-producing bacteria (strain 5-1) was isolated from button mushroom compost in Boryeong-Si, Chungcheongnam-Do. The 5-1 strain was classified as a novel strain of Enterobacter aerogenes based on chemotaxonomic and phylogenetic analyses. The isolated E. aerogenes 5-1 was confirmed to produce indole-3-acetic acid (IAA), one of the auxin hormones, using TLC and HPLC analyses. When the concentration of IAA was assessed by performing HPLC quantitative analysis, a maximum concentration of IAA of $109.9mgL^{-1}$ was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 24 h at $35^{\circ}C$. Acidification of the culture was deemed caused by an increase of IAA because a negative relationship between IAA production and pH was observed. Supplementation with a known precursor of IAA production, L-tryptophan, appeared to induce maximal production at 0.1% concentration, but it reduced production at concentrations above 0.2%. To investigate the growth-promoting effects to crops, the culture broth of E. aerogenes 5-1 was used to inoculate water cultures and seed pots of mung bean and lettuce. In consequence, adventitious root induction and root growth of mung bean and lettuce were two times higher than those of the control.

Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application

  • Shin, Kuan-Soo;Kim, Ji-Hoon;Kim, In-Hyun;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.906-910
    • /
    • 2012
  • Hollow gold-silver bimetallic nanoparticles (AuAg-HNPs) have been synthesized and their optical and structural properties were characterized. Initially Ag nanoparticles (Ag-NPs) were prepared using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. AuAg-HNPs could then be synthesized via galvanic replacement reaction in a PEI aqueous solution by reacting sacrificial Ag template with a precursor compound of Au, i.e., $HAuCl_4$. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of $Ag^+$ in the presence of Cl from $HAuCl_4$ salt was avoided. On this basis, the relatively high concentrations of $HAuCl_4$ and PEI-stabilized Ag nanoparticles could be used for the fabrication of AuAg-HNPs. Because of their increased surface areas and reduced densities, the AuAg-HNPs were expected and confirmed to outperform their solid counterparts in applications such as catalysis for the reduction of 4-nitrophenol in the presence of $NaBH_4$.

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

Preparation and Photocatalytic Effect of Brookite Phase TiO2 Colloidal Sol for Thin Film Coating (Brookite TiO2 코팅용 졸의 제조 및 광촉매 효과)

  • Kim, Sun-Jae;Lee, Nam-Hee;Lee, Kang;Choi, Chang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.461-468
    • /
    • 2005
  • Transparent TiO$_{2}$ sols were prepared by hydrothermal synthesis to heat Ti precursor solutions, from Ti hydroxides obtained with neutralizing aqueous TiOCl$_{2}$ solutions having various concentrations of NaCI by aqueous NaOH solution, in the autoclave at 120$^{\circ}C$ The photocatalytic abilities of glass beads coated with the sol for gaseous benzene were evaluated. As a result, it was found that due to the increase of brookite phase in TiO$_{2}$ by controlling the concentration of Na ion the optical absorption of TiO$_{2}$ increases toward long wavelength but that in the area of short wavelength becomes relatively low and consequently the photocatalytic performance of TiO$_{2}$ thin film for benzene gas rather decreases, compared to that of composite film of anatase and brookite phases. These results suggest that in order for coated TiO$_{2}$ thin film to have high dissociation performance for benzene gas it is effective to form anatase and brookite phases compositely in TiO$_{2}$.

Sulforaphane is Superior to Glucoraphanin in Modulating Carcinogen-Metabolising Enzymes in Hep G2 Cells

  • Abdull Razis, Ahmad Faizal;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4235-4238
    • /
    • 2013
  • Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 ${\mu}M$) for 24 hours. Glucoraphanin at higher concentration (25 ${\mu}M$) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 ${\mu}M$. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen-metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

Stimulatory Effect of N-acetylcysteine on Odontoblastic Differentiation

  • Jun, Ji-Hae;Lee, Hye-Lim;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.187-195
    • /
    • 2008
  • Reparative dentine formation requires newly differentiated odontoblast-like cells. Therefore, identification of the molecule that stimulates the odontogenic differentiation of precursor cells in the tooth pulp will be helpful for the development of strategies to repair damaged pulp. In this study, we examined the effect of N-acetylcysteine (NAC) on the odontogenic differentiation of MDPC-23 cells, a mouse odontoblast-like cell line derived from dental papilla, and primary cultured rat dental papilla cells (RDPCs). NAC (1-30 mM) suppressed production of reactive oxygen species in MDPC-23 cells in a dose-dependent manner. Although 5 to 20 mM NAC did not alter MDPC-23 cell proliferation, 1 or 30 mM NAC significantly inhibited it. NAC enhanced mineralized nodule formation and the expression of several odontoblast differentiation-associated genes in both RDPCs and MDPC-23. This NAC stimulatory effect was significant, even at concentrations lower than 1 mM. However, NAC did not stimulate expression of bone morphogenetic protein-2, -4, or -7, which are known to enhance odontogenic differentiation. Since reactive oxygen species are also involved in the pulp toxicity of resin-based restorative materials, these results suggest that NAC may be a promising candidate for supplementation of dental restorative materials in order to enhance reparative dentine formation.