• 제목/요약/키워드: Preclinical Positron Emission Tomography

검색결과 7건 처리시간 0.022초

각 층의 서로 다른 크기의 섬광체를 사용한 반응 깊이 측정 검출기 설계 (DOI Detector Design using Different Sized Scintillators in Each Layer)

  • 이승재
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.11-16
    • /
    • 2023
  • 전임상용 양전자방출단층촬영기기는 관심 시야 외곽에서의 공간분해능 저하현상이 발생한다. 이를 해결하기 위해 감마선과 섬광체가 상호작용한 위치를 측정하는 반응 깊이 측정(depth of interaction, DOI) 검출기가 개발되었다. 여러 층으로 섬광 픽셀 배열을 구성한 방법, 하나의 층의 양단에 광센서를 배치한 방법, 여러 층으로 섬광 픽셀 배열을 구성하고 각 층마다 광센서를 배치한 방법 등이 있다. 본 연구에서는 기존에 개발된 검출기들의 특징을 분석하여 새로운 형태의 DOI 검출기를 설계하였다. 두층으로 구성된 검출기는 각 층마다 서로 다른 크기의 섬광 픽셀을 사용하여, 배열의 크기를 다르게 구성하였다. 이러한 형태로 구성할 경우 층별 섬광 픽셀의 위치는 서로 어긋나게 배열되어 평면 영상에서 서로 다른 위치에 영상화된다. 설계한 검출기의 반응 깊이 측정 가능성을 확인하기위해 DETECT2000 시뮬레이션을 수행하였다. 각 섬광 픽셀의 중심에서 발생된 감마선 이벤트로 획득한 빛의 신호로 평면 영상을 재구성하였다. 그 결과 각 층별 모든 섬광 픽셀이 재구성된 평면 영상에서 분리되어 영상화되어, 반응 깊이를 측정할 수 있음을 확인할 수 있었다. 본 검출기를 전임상용 PET에 적용할 경우 공간분해능의 향상을 이루어 우수한 영상을 획득할 수 있을 것으로 사료된다.

광센서 크기에 따른 섬광 픽셀 배열의 최대화 연구 (A Study on the Maximization of Scintillation Pixel Array According to the Size of the Photosensor)

  • 이승재
    • 한국방사선학회논문지
    • /
    • 제16권2호
    • /
    • pp.157-162
    • /
    • 2022
  • 전임상용 양전자방출단층촬영기기는 인체에 비해 매우 작은 소동물을 대상으로 촬영이 이루어지므로, 우수한 공간분해능을 지닌 검출기가 필요하다. 이를 위해 작은 섬광 픽셀을 사용한 검출기를 사용하여 시스템을 구성하였다. 현재 개발되어 사용되는 광센서의 크기는 한정되어 있으므로, 이에 맞는 최소한의 섬광 픽셀과 최대의 배열로 구성할 경우 우수한 공간분해능을 얻을 수 있다. 본 연구에서는 광센서의 크기를 고정하고, 이에 맞는 다양한 섬광 픽셀의 배열을 구성하여 평면 영상에서 겹침이 발생하지 않고, 모든 섬광 픽셀들이 구분이 되는 최대의 섬광 픽셀 배열을 찾고자 한다. 이를 위해 섬광체와 광센서로 이루어진 검출기 모듈의 시뮬레이션이 가능한 DETECT2000을 사용하였다. 3 mm × 3 mm 픽셀이 4 × 4 배열로 이루어진 광센서를 사용하였으며, 섬광 픽셀 배열은 8 × 8에서부터 13 × 13까지 구성하여 시뮬레이션을 수행하였다. 광센서 픽셀에서 획득된 데이터를 통해 평면 영상을 구성하였으며, 평면 영상과 프로파일을 통해 영상의 겹침이 발생하지 않는 최대의 섬광 픽셀 배열을 찾았다. 그 결과 평면 영상에서 서로 겹침이 발생하지 않고 모든 섬광 픽셀들이 영상화되는 섬광 픽셀 배열의 크기는 11 × 11이었다.

Development of Drugs and Technology for Radiation Theragnosis

  • Jeong, Hwan-Jeong;Lee, Byung Chul;Ahn, Byeong-Cheol;Kang, Keon Wook
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.597-607
    • /
    • 2016
  • Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

Establishment of a [18F]-FDG-PET/MRI Imaging Protocol for Gastric Cancer PDX as a Preclinical Research Tool

  • Bae, Seong-Woo;Berlth, Felix;Jeong, Kyoung-Yun;Suh, Yun-Suhk;Kong, Seong-Ho;Lee, Hyuk-Joon;Kim, Woo Ho;Chung, June-Key;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • 제20권1호
    • /
    • pp.60-71
    • /
    • 2020
  • Purpose: The utility of 18-fluordesoxyglucose positron emission tomography ([18F]-FDG-PET) combined with computer tomography or magnetic resonance imaging (MRI) in gastric cancer remains controversial and a rationale for patient selection is desired. This study aims to establish a preclinical patient-derived xenograft (PDX) based [18F]-FDG-PET/MRI protocol for gastric cancer and compare different PDX models regarding tumor growth and FDG uptake. Materials and Methods: Female BALB/c nu/nu mice were implanted orthotopically and subcutaneously with gastric cancer PDX. [18F]-FDG-PET/MRI scanning protocol evaluation included different tumor sizes, FDG doses, scanning intervals, and organ-specific uptake. FDG avidity of similar PDX cases were compared between ortho- and heterotopic tumor implantation methods. Microscopic and immunohistochemical investigations were performed to confirm tumor growth and correlate the glycolysis markers glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) with FDG uptake. Results: Organ-specific uptake analysis showed specific FDG avidity of the tumor tissue. Standard scanning protocol was determined to include 150 μCi FDG injection dose and scanning after one hour. Comparison of heterotopic and orthotopic implanted mice revealed a long growth interval for orthotopic models with a high uptake in similar PDX tissues. The H-score of GLUT1 and HK2 expression in tumor cells correlated with the measured maximal standardized uptake value values (GLUT1: Pearson r=0.743, P=0.009; HK2: Pearson r=0.605, P=0.049). Conclusions: This preclinical gastric cancer PDX based [18F]-FDG-PET/MRI protocol reveals tumor specific FDG uptake and shows correlation to glucose metabolic proteins. Our findings provide a PET/MRI PDX model that can be applicable for translational gastric cancer research.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

여러 반사체를 사용한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발 (Development of PET Detector Module Measuring DOI using Multiple Reflectors)

  • 김능균;김구;곽종혁;이승재
    • 한국방사선학회논문지
    • /
    • 제13권6호
    • /
    • pp.825-830
    • /
    • 2019
  • 두 층의 섬광체와 각 층별 서로 다른 반사체의 사용과 섬광체와 감마선의 상호작용으로 발생한 빛 신호를 측정하기 위한 광센서로써 실리콘광전증배관(Silicon Photomultiplier, SiPM)을 사용하여 반응 깊이를 측정하는 검출기를 개발하였다. 층별 섬광 픽셀의 반사체의 종류를 다르게 사용함으로써 획득한 신호를 바탕으로 영상을 재구성할 경우 모든 섬광 픽셀이 서로 다른 위치에 기록되는 특징을 활용하여 섬광 픽셀과 감마선이 반응한 위치를 추적하였다. 아래층은 거울반사체를 사용하였으며, 위층은 난반사체를 사용하여 SiPM에서 획득되는 신호의 크기를 다르게 처리하였다. 섬광체 사이와 SiPM과 연결되는 부분은 광학적으로 연결되도록 광학 그리즈를 사용하여 급격한 굴절률 변화를 감소시켰다. 16개의 SiPM에서 획득한 신호는 앵거 방정식을 사용하여 4개의 신호로 감소시켰으며, 이를 사용하여 영상을 재구성하였다. 두 층으로 구성된 모든 섬광 픽셀이 재구성된 영상에 나타났으며, 이를 통해 섬광 픽셀과 감마선이 반응한 층을 구분할 수 있었다. 서로 다른 반사체를 사용하여 두 층의 반응 깊이를 측정하는 검출기를 전 임상용 양전자방출단층촬영기기에 적용할 경우 관심 시야 외곽에서 나타나는 공간분해능의 저하 현상을 해결할 수 있을 것으로 판단된다.

SiPM을 사용한 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 모듈 설계 (Design of Two Layer Depth-encoding Detector Module with SiPM for PET)

  • 이승재
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.319-324
    • /
    • 2019
  • 실리콘광전증배관(Silicon Photomultiplier, SiPM)과 두 층의 섬광 픽셀 배열을 이용한 반응 깊이 측정 검출기를 설계하였으며, 위치 측정 능력을 DETECT2000을 사용하여 검증하였다. 섬광 픽셀의 면 처리와 반사체 조합을 통해 섬광 픽셀과 감마선이 반응한 위치를 추적하였다. 아래층은 광학적으로 연결된 부분을 제외하고 반사체로 처리하였으며, 위층은 가장 외곽부분을 제외하고 모두 광학적으로 연결되도록 처리하여 빛의 공유가 아래층에 비해 자유롭도록 구성하였다. 거울반사체와 난반사체, 섬광 픽셀의 거친 면과 매끈한 면의 조합을 통해 평면 영상을 획득하였으며, 층별 영상이 생성되는 위치를 측정하여 분석하였다. 앵거 알고리듬을 사용하여 SiPM의 16채널 신호를 4개의 채널로 감소시켜 영상을 재구성하였다. 섬광 픽셀의 거친면과 모든 반사체 조합에서 두 층으로 구분되는 것을 확인할 수 있었으며, 매끈한 면일 경우에는 모두 층 구분이 불가능한 것을 확인할 수 있었다. 따라서 거친 면의 섬광 픽셀과 반사체 조합을 사용한 검출기를 사용할 경우 전임상용 PET에서 반응 깊이 측정을 통해 검출 시야 외곽에서의 공간분해능을 향상시킬 수 있을 것이다.