Browse > Article
http://dx.doi.org/10.7742/jksr.2022.16.2.157

A Study on the Maximization of Scintillation Pixel Array According to the Size of the Photosensor  

Lee, Seung-Jae (Department of Radiological Science, Dongseo University)
Publication Information
Journal of the Korean Society of Radiology / v.16, no.2, 2022 , pp. 157-162 More about this Journal
Abstract
Since preclinical positron emission tomography imaging is performed on small animals that are very small compared to the human body, a detector with excellent spatial resolution is required. For this purpose, a system was constructed using a detector using small scintillation pixels. Since the size of the currently developed and used photosensors is limited, excellent spatial resolution can be obtained when the minimum scintillation pixel and maximum array are used. In this study, the size of the photosensor is fixed and various scintillation pixel arrays are configured to match the size of the scintillation pixels, so that no overlap occurs in the flood image and the maximum scintillation pixel array in which all scintillation pixels are distinguished. For this purpose, DETECT2000, which can simulate a detector module composed of a scintillator and an photosensor, was used. A photosensor consisting of a 4 × 4 array of 3 mm × 3 mm pixels was used, and the scintillation pixel array was configured from 8 × 8 to 13 × 13, and simulations were performed. A flood image was constructed using the data obtained from the photosensor pixel, and the maximum scintillation pixel array that does not overlap the image was found through the flood image and the profile. As a result, the size of the scintillation pixel array in which all scintillation pixels are imaged without overlapping each other in the flood image was 11 × 11.
Keywords
Preclinical; Positron Emission Tomography; Scintillation Pixel Array; DETECT2000;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. R. Cherry, Y. Shao, R. W. Silverman, K. Meadors, S. Siegel, A. Chatziioannou, J. W. Young, W. Jones, J. C. Moyers, D. Newport, A. Boutefnouchet, T. H. Farquhar, M. Andreaco, M. J. Paulus, D. M. Binkley, R. Nutt, M. E. Phelps, "MicroPET: a high resolution PET scanner for imaging small animals", IEEE Transactions on Nuclear Science, Vol. 44, No. 3, 1997. http://dx.doi.org/0.1109/23.596981
2 C. Knoess, S. Siegel, A. Smith, D. Newport, N. Richerzhagen, A. Winkeler, A. Jacobs, R. N. Goble, K. Wienhard, W-D. Heiss, "Performance evaluation of the microPET R4 PET scanner for rodents", European Journal of Nuclear Medicine and Molecular Imaging, Vol. 30, pp. 737-747, 2003. http://dx.doi.org/0.1007/s00259-002-1052-6   DOI
3 Y. C. Tai, A. F. Chatziioannou, Y. Yang, R. W. Silverman, K. Meadors, S. Siegel, D. F. Newport, J. R. Stickel, S. R. Cherry, "MicroPETII: design, development and initial performance of an improved microPET scanner for small-animal imaging", Physics in Medicine & Biology, Vol. 48, No. 11, pp. 1519-1537, 2003. http://dx.doi.org/0.1088/0031-9155/48/11/303   DOI
4 R. Laforest, D. Longford, S. Siegel, D. F. Newport, J. Yap, "Performance Evaluation of the microPET®-FOCUS-F120", IEEE Transactions on Nuclear Science, Vol. 54, No. 1, pp. 42-49, 2007. http://dx.doi.org/10.1109/TNS.2006.889312   DOI
5 https://www.hamamatsu.com/resources/pdf/ssd/s14160_s14161_series_kapd1064e.pdf
6 K. Nagy, M. Toth, P. Major, G. Patay, G. Egri, J. Haggkvist, A. Varrone, L. Farde, C. Halldin, B. Gulyas, "Performance evaluation of the small-animal nanoScan PET/MRI system", Journal of Nuclear Medicine, Vol. 54, No. 10, pp. 1825-1832, 2013. http://dx.doi.org/10.2967/jnumed.112.119065   DOI
7 F. Cayouette, C. Moisan, N. Zhang, C. J. Thompson, "Monte Carlo Modeling of Scintillator Crystal Performance for Stratified PET Detectors With DETECT2000", IEEE Transactions on Nuclear Science, Vol. 49, No. 3, pp. 624-628, 2002. https://doi.org/10.1109/TNS.2002.1039539   DOI
8 C. C. Constantinescu, and J. Mukherjee, "Performance evaluation of an Inveon PET preclinical scanner", Physics in Medicine & Biology, Vol. 54, No. 9, pp. 2885-2899, 2009. http://dx.doi.org/10.1088/0031-9155/54/9/020   DOI
9 A. R. Yu, J. S. Kim, K. M. Kim, Y. S. Lee, J. G. Kim, S. K. Woo, J. A. Park, H. J. Kim, G. J. Cheon, "Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging", Progress in Medical Physics, Vol. 21, No. 2, 2010.
10 F. Cayouette, D. Laurendeau, C. Moisan, "DETECT2000: an improved Monte-Carlo simulator for the computer aided design of photon sensing devices", Proceedings of SPIE, Quebec, Vol. 4833, pp. 69-76, 2003. https://doi.org/10.1117/12.474315   DOI
11 https://www.epic-crystal.com/oxide-scintillators/gagg-ce-scintillator.html
12 Y. C. Tai, A. Chatziioannou, S. Siegel, J. Young, D. Newport, R. N. Goble, R. E. Nutt, and S. R. Cherry, "Performance evaluation of the microPET P4: a PET system dedicated to animal imaging", Physics in Medicine & Biology, Vol. 46, No. 7, pp. 1845-1862, 2001. http://dx.doi.org/10.1088/0031-9155/46/7/308   DOI
13 Y. C. Tai, A. Ruangma, D. Rowland, S. Siegel, D. F. Newport, P. L. Chow, R. Laforest, "Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging", Journal of Nuclear Medicine, Vol. 46, No. 3, pp. 455-463, 2005.