• Title/Summary/Keyword: Precision-recall

Search Result 717, Processing Time 0.028 seconds

A Study on the Development of YOLO-Based Maritime Object Detection System through Geometric Interpretation of Camera Images (카메라 영상의 기하학적 해석을 통한 YOLO 알고리즘 기반 해상물체탐지시스템 개발에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.499-506
    • /
    • 2022
  • For autonomous ships to be commercialized and be able to navigate in coastal water, they must be able to detect maritime obstacles. One of the most common obstacles seen in coastal area are the farm buoys. In this study, a maritime object detection system was developed that detects buoys using the YOLO algorithm and visualizes the distance and bearing between buoys and the ship through geometric interpretation of camera images. After training the maritime object detection model with 1,224 pictures of buoys, the precision of the model was 89.0%, the recall was 95.0%, and the F1-score was 92.0%. Camera calibration had been conducted to calculate the distance and bearing of an object away from the camera using the obtained image coordinates and Experiment A and B were designed to verify the performance of the maritime object detection system. As a result of verifying the performance of the maritime object detection system, it can be seen that the maritime object detection system is superior to radar in its short-distance detection capability, so that it can be used as a navigational aid along with the radar.

YOLOv5-based Chimney Detection Using High Resolution Remote Sensing Images (고해상도 원격탐사 영상을 이용한 YOLOv5기반 굴뚝 탐지)

  • Yoon, Young-Woong;Jung, Hyung-Sup;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1677-1689
    • /
    • 2022
  • Air pollution is social issue that has long-term and short-term harmful effect on the health of animals, plants, and environments. Chimneys are the primary source of air pollutants that pollute the atmosphere, so their location and type must be detected and monitored. Power plants and industrial complexes where chimneys emit air pollutants, are much less accessible and have a large site, making direct monitoring cost-inefficient and time-inefficient. As a result, research on detecting chimneys using remote sensing data has recently been conducted. In this study, YOLOv5-based chimney detection model was generated using BUAA-FFPP60 open dataset create for power plants in Hebei Province, Tianjin, and Beijing, China. To improve the detection model's performance, data split and data augmentation techniques were used, and a training strategy was developed for optimal model generation. The model's performance was confirmed using various indicators such as precision and recall, and the model's performance was finally evaluated by comparing it to existing studies using the same dataset.

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM (GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1490-1499
    • /
    • 2022
  • Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

A Text Content Classification Using LSTM For Objective Category Classification

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.39-46
    • /
    • 2021
  • AI is deeply applied to various algorithms that assists us, not only daily technologies like translator and Face ID, but also contributing to innumerable fields in industry, due to its dominance. In this research, we provide convenience through AI categorization, extracting the only data that users need, with objective classification, rather than verifying all data to find from the internet, where exists an immense number of contents. In this research, we propose a model using LSTM(Long-Short Term Memory Network), which stands out from text classification, and compare its performance with models of RNN(Recurrent Neural Network) and BiLSTM(Bidirectional LSTM), which is suitable structure for natural language processing. The performance of the three models is compared using measurements of accuracy, precision, and recall. As a result, the LSTM model appears to have the best performance. Therefore, in this research, text classification using LSTM is recommended.

Heart Disease Prediction Using Decision Tree With Kaggle Dataset

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.21-28
    • /
    • 2022
  • All health problems that occur in the circulatory system are refer to cardiovascular illness, such as heart and vascular diseases. Deaths from cardiovascular disorders are recorded one third of in total deaths in 2019 worldwide, and the number of deaths continues to rise. Therefore, if it is possible to predict diseases that has high mortality rate with patient's data and AI system, they would enable them to be detected and be treated in advance. In this study, models are produced to predict heart disease, which is one of the cardiovascular diseases, and compare the performance of models with Accuracy, Precision, and Recall, with description of the way of improving the performance of the Decision Tree(Decision Tree, KNN (K-Nearest Neighbor), SVM (Support Vector Machine), and DNN (Deep Neural Network) are used in this study.). Experiments were conducted using scikit-learn, Keras, and TensorFlow libraries using Python as Jupyter Notebook in macOS Big Sur. As a result of comparing the performance of the models, the Decision Tree demonstrates the highest performance, thus, it is recommended to use the Decision Tree in this study.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.9-17
    • /
    • 2023
  • In this paper, we propose a one-class vibration anomaly detection system for bearing defect diagnosis. In order to reduce the economic and time loss caused by bearing failure, an accurate defect diagnosis system is essential, and deep learning-based defect diagnosis systems are widely studied to solve the problem. However, it is difficult to obtain abnormal data in the actual data collection environment for deep learning learning, which causes data bias. Therefore, a one-class classification method using only normal data is used. As a general method, the characteristics of vibration data are extracted by learning the compression and restoration process through AutoEncoder. Anomaly detection is performed by learning a one-class classifier with the extracted features. However, this method cannot efficiently extract the characteristics of the vibration data because it does not consider the frequency characteristics of the vibration data. To solve this problem, we propose an AutoEncoder model that considers the frequency characteristics of vibration data. As for classification performance, accuracy 0.910, precision 1.0, recall 0.820, and f1-score 0.901 were obtained. The network design considering the vibration characteristics confirmed better performance than existing methods.

Automatic Classification of Academic Articles Using BERT Model Based on Deep Learning (딥러닝 기반의 BERT 모델을 활용한 학술 문헌 자동분류)

  • Kim, In hu;Kim, Seong hee
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.293-310
    • /
    • 2022
  • In this study, we analyzed the performance of the BERT-based document classification model by automatically classifying documents in the field of library and information science based on the KoBERT. For this purpose, abstract data of 5,357 papers in 7 journals in the field of library and information science were analyzed and evaluated for any difference in the performance of automatic classification according to the size of the learned data. As performance evaluation scales, precision, recall, and F scale were used. As a result of the evaluation, subject areas with large amounts of data and high quality showed a high level of performance with an F scale of 90% or more. On the other hand, if the data quality was low, the similarity with other subject areas was high, and there were few features that were clearly distinguished thematically, a meaningful high-level performance evaluation could not be derived. This study is expected to be used as basic data to suggest the possibility of using a pre-trained learning model to automatically classify the academic documents.

Deep Learning-based Spine Segmentation Technique Using the Center Point of the Spine and Modified U-Net (척추의 중심점과 Modified U-Net을 활용한 딥러닝 기반 척추 자동 분할)

  • Sungjoo Lim;Hwiyoung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Osteoporosis is a disease in which the risk of bone fractures increases due to a decrease in bone density caused by aging. Osteoporosis is diagnosed by measuring bone density in the total hip, femoral neck, and lumbar spine. To accurately measure bone density in the lumbar spine, the vertebral region must be segmented from the lumbar X-ray image. Deep learning-based automatic spinal segmentation methods can provide fast and precise information about the vertebral region. In this study, we used 695 lumbar spine images as training and test datasets for a deep learning segmentation model. We proposed a lumbar automatic segmentation model, CM-Net, which combines the center point of the spine and the modified U-Net network. As a result, the average Dice Similarity Coefficient(DSC) was 0.974, precision was 0.916, recall was 0.906, accuracy was 0.998, and Area under the Precision-Recall Curve (AUPRC) was 0.912. This study demonstrates a high-performance automatic segmentation model for lumbar X-ray images, which overcomes noise such as spinal fractures and implants. Furthermore, we can perform accurate measurement of bone density on lumbar X-ray images using an automatic segmentation methodology for the spine, which can prevent the risk of compression fractures at an early stage and improve the accuracy and efficiency of osteoporosis diagnosis.

Development of Performance Evaluation Formula for Deep Learning Image Analysis System (딥러닝 영상분석 시스템의 성능평가 산정식 개발)

  • Hyun Ho Son;Yun Sang Kim;Choul Ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.78-96
    • /
    • 2023
  • Urban traffic information is collected by various systems such as VDS, DSRC, and radar. Recently, with the development of deep learning technology, smart intersection systems are expanding, are more widely distributed, and it is possible to collect a variety of information such as traffic volume, and vehicle type and speed. However, as a result of reviewing related literature, the performance evaluation criteria so far are rbs-based evaluation systems that do not consider the deep learning area, and only consider the percent error of 'reference value-measured value'. Therefore, a new performance evaluation method is needed. Therefore, in this study, individual error, interval error, and overall error are calculated by using a formula that considers deep learning performance indicators such as precision and recall based on data ratio and weight. As a result, error rates for measurement value 1 were 3.99 and 3.54, and rates for measurement value 2 were 5.34 and 5.07.

A Study on the Bleeding Detection Using Artificial Intelligence in Surgery Video (수술 동영상에서의 인공지능을 사용한 출혈 검출 연구)

  • Si Yeon Jeong;Young Jae Kim;Kwang Gi Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.211-217
    • /
    • 2023
  • Recently, many studies have introduced artificial intelligence systems in the surgical process to reduce the incidence and mortality of complications in patients. Bleeding is a major cause of operative mortality and complications. However, there have been few studies conducted on detecting bleeding in surgical videos. To advance the development of deep learning models for detecting intraoperative hemorrhage, three models have been trained and compared; such as, YOLOv5, RetinaNet50, and RetinaNet101. We collected 1,016 bleeding images extracted from five surgical videos. The ground truths were labeled based on agreement from two specialists. To train and evaluate models, we divided the datasets into training data, validation data, and test data. For training, 812 images (80%) were selected from the dataset. Another 102 images (10%) were used for evaluation and the remaining 102 images (10%) were used as the evaluation data. The three main metrics used to evaluate performance are precision, recall, and false positive per image (FPPI). Based on the evaluation metrics, RetinaNet101 achieved the best detection results out of the three models (Precision rate of 0.99±0.01, Recall rate of 0.93±0.02, and FPPI of 0.01±0.01). The information on the bleeding detected in surgical videos can be quickly transmitted to the operating room, improving patient outcomes.