• Title/Summary/Keyword: Precision manufacturing

Search Result 2,929, Processing Time 0.031 seconds

Exploring precise deposition and influence mechanism for micro-scale serpentine structure fiber

  • Wang, Han;Ou, Weicheng;Zhong, Huiyu;He, Jingfan;Wang, Zuyong;Cai, Nian;Chen, XinDu;Xue, Zengxi;Liao, Jianxiang;Zhan, Daohua;Yao, Jingsong;Wu, Peixuan
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.151-165
    • /
    • 2022
  • Micro-scale serpentine structure fibers are widely used as flexible sensor in the manufacturing of micro-nano flexible electronic devices because of their outstanding non-linear mechanical properties and organizational flexibility. The use of melt electrowriting (MEW) technology, combined with the axial bending effect of the Taylor cone jet in the process, can achieve the micro-scale serpentine structure fibers. Due to the interference of the process parameters, it is still challenging to achieve the precise deposition of micro-scale and high-consistency serpentine structure fibers. In this paper, the micro-scale serpentine structure fiber is produced by MEW combined with axial bending effect. Based on the controlled deposition of MEW, applied voltage, collector speed, nozzle height and nozzle diameter are adjusted to achieve the precise deposition of micro-scale serpentine structure fibers with different morphologies in a single motion dimension. Finally, the influence mechanism of the above four parameters on the precise deposition of micro-scale serpentine fibers is explored.

Development of Simulation System Curved Surface Rendering using a Ball-end Milling (볼 엔드밀을 사용한 곡면가공 시뮬레이션 시스템 개발)

  • 박홍석;박준학;이재종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.125-128
    • /
    • 1997
  • They use a Ball End-mill in order to manufacturing sculptured surface when making metal mold, mold, cars and aircraft. In the work of a Ball End-mill case, customers do not often satisfied with manufacturing precision. Eventually, they have to re-work for the purpose of meeting manufacturing precision. There are resulted in lots of loss, whereby, in terms of both time and costs. The reasons of tolerance reducing manufacturing precision are thermal strain, the surface is damaged because of increasing cutting force and tool wear, tool deflection etc.. We focus on, however, manufacturing precision caused due to deflection of tool.

  • PDF

A Study on the Development of Measuring System for Extra Long Roller Using Non-contact Sensor (비접촉식 센서를 이용한 초장축 롤러 측정 장치 개발에 관한 연구)

  • Kim, Woong;Lee, Choon-Man;Lee, Mun-Jae;Park, Sung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • Manufacturing accuracy of a precision instrument was essential to stability and efficiency of the product. Accordingly, geometrically accuracy management of precision instrument was very becoming the technique in order to design and manufacturing for machine. In this study, Measuring System is developed for extra long roller using non-contact sensor. Futhermore, It's studied by Geometric Tolerance. Exact roundness is obtained to Least Squares method from the reference circle of measured data. Measuring System is analyzed point of measurement and straightness of extra long roller is evaluated by FEM.