• Title/Summary/Keyword: Precision Tracking Control

Search Result 333, Processing Time 0.026 seconds

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

Disturbance Observer- Based Sliding Mode Control for the Precise Mechanical System with the Bristle Friction Model

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.5-14
    • /
    • 2003
  • Tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate fer effects of friction. The conventional SMC method often shows poor tracking performance in high-precision position tracking application since it cannot completely compensate for the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the SMC method combined with the disturbance observer having tunable transient performance. Then this control scheme has the high precise tracking peformance as well as a good transient response when it is compared with the conventional SMC method and the similar types of observers, The experiment on the XY ball-screw drive system with the nonlinear dynamic friction confirms the feasibility of the proposed control scheme.

Position Tracking Control on the XY Ball-screw Drive System with the Nonlinear Dynamic Friction (비선형 동적마찰을 갖는 XY볼-스크류 구동계에 대한 위치 추종제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.51-61
    • /
    • 2002
  • A tracking control scheme on the XY ball-screw drive system in the presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the Lund-Grenoble friction model to compensate effects of friction. The conventional VSC method that often has been used as a non-model-based friction controller has poor tracking performance in high-precision position tracking application since it cannot compensate the friction effect below a certain precision level completely. Thus to improve the precise position tracking performance, we propose the integral type VSC method combined with the friction-model-based observer. Then this control scheme has the high precise tracking performance compared with the non-model-baked VSC method and the PID control method with a similar observer. This fact is shown through the experiment on the XY ball-screw drive system with the nonlinear dynamic friction.

Precision Position Control of a Fast Tool Servo Using Piezoelectric Actuators (압전 구동기를 이용한 미소절삭 공구대의 정밀위치제어)

  • Song, J.W.;Kim, S.H.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.50-57
    • /
    • 1997
  • A fast tool servo (FTS) for diamond turning improves machining accuracy by quickly compensating relative position errors between the cutter and the workpiece. Therefore, the FTS needs to have large band-width with good tracking performance. Serious hysteresis nonlinearity of PZT actuators used in the FTS, however, deteriorates fast tracking performance. Several types of feedforward hysteresis compensators and feedback controllers are tested to improve tracking performance. Through simulations and experiments, control structure which yields the smallest tracking error is selected. The maximum peak to peak error in tracking a sinusoidal waveform is reduced by one fifth compared to that of a regular PID controller.

  • PDF

Ultra-Precision Position Control of Piezoelectric Actuator System Using Hysteresis Compensation (히스테리시스 보상을 이용한 압전구동기의 초정밀 위치제어)

  • 홍성룡;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.85-88
    • /
    • 2000
  • In this paper, the ultra precision positioning system for piezoelectric actuator using hysteresis compensation has been developed. Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. The main purpose of the proposed controller is to compensate the hysteresis nonlinearity of the piezoelectric actuator. The controller is composed of a PD, hysteresis compensation and neural network part in parallel manner, at first, the excellent tracking performance of the neural network controller was verified by experiments and was compared with the classical PD controller.

  • PDF

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

Force Tracking Control of a Small-Sized SMA Gripper H$_\infty$ Synthesis (H$_\infty$ 제어기법을 적용한 소형 SMA 그립퍼의 힘 추적 제어)

  • 한영민;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.391-395
    • /
    • 1996
  • This paper presents a robust force tracking control of a small-sized SMA gripper with two fingers using shape memory alloy(SMA) actuators. The mathematical governing equation of the proposed system is derived by Hamilton's principle and Lagrangian equation and then, the control system model is integrated with the first-order actuator dynamics. Uncertain system parameters such as time constant of the actuators are also included in the control model. A robust two degree of freedom(TDF) controller using H$_{\infty}$ control theory, which has inherent robustness to model uncertainties and external disturbances, is adopted to achieve end-point force tracking control of the two-finger gripper. Force tracking control performances for desired trajectories represented by sinusoidal and step functions are evaluated by undertaking both simulation and experimental works.

  • PDF

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Control Strategy to Reduce Tracking Error by Impulsive Torques at the Joint

  • Yang Chulho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.61-71
    • /
    • 2005
  • The study reported deals with investigating the feasibility of control strategy for a serial rigid link manipulator that applies impulsive torques at the joints. The strategy is illustrated for a planar three rigid link manipulator. An impulse-based concept which uses successive torque impulses on rigid link as the controller for motion correction was introduced. This control strategy was tested over the entire trajectory to demonstrate that the tracking error could be reduced effectively. The best condition for minimizing the tracking error with the least impulse input at each joint is investigated by considering one design and one operating parameter. The first was the damping in the system, and the second was the sampling time during operation. The results show that this approach can provide useful guidance for the design and control of robot manipulators that require minimum impulse feedback for accurate tracking.

Position Control of the Pneumatic Excavator System Using Adaptive Sliding Mode Controller (적응슬라이딩 모드 제어기를 이용한 공압굴삭기 시스템의 위치 제어)

  • Lim, Tae-Hyeong;Cheon, Se-Young;Yang, Soon-Yong;Choi, Jeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.82-87
    • /
    • 2007
  • Excavator has been used in wide field since the attachment in the end effect can be changeable according to the purpose of working. However, efficiency of work using excavator mainly depends on an operator's ability. For the purpose of improving the efficiency of work and reducing the fatigue of operator, the automatic excavator system has been researched. In this paper, the tracking control system of each links of excavator is designed before developing the automatic excavator system. In order to apply the tracking control system, the pneumatic excavator system is developed and the tracking control system is applied. For designing the tracking control system, the adaptive sliding mode control algorithm is proposed. The performance of the proposed control system is evaluated through experiments using the pneumatic excavator system.