• Title/Summary/Keyword: Precision Screws

Search Result 53, Processing Time 0.027 seconds

Three dimensional finite element analysis of static deflections of a machine tool structures (3차원 유한요소 모델링을 통한 공작기계 구조의 정적 변형도 해석)

  • 김현석;이수정;정광섭;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.638-643
    • /
    • 1993
  • The three dimensional finite element models for the basic deflection of linear motion guides and ball screws were developed. Form the comparison of the results calculated by the finite element method with those by the experiment, it was proved that the modeling method might be applied to real machine tool structures. Form the structural analysis of the headstock of the machine tool, it was found that the static stiffness was calculated within 6.5% error

  • PDF

NC 선반의 동적이송오차에 관한 연구

  • 여인완;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.641-645
    • /
    • 1996
  • Ball screws are used in the feeding system for transmission of driving force. The friction effect between bed and table, which can affect in accuracyin one dimension feeding and describe the dynamic feeding error, could be simplified as a specific model through experiments. The experiments for dynamic feeding errors were performed om tje NC lathe eith a ball screw. The errors in feeding were measured with respect to the variances of feed, spindle speed and motor current for feeding. A rotary encoder and a current sensor were installed with NC lathe.

  • PDF

Numerical Analysis and Experimental Study of Thread Rolling Process for Micro-sized Screws(Part II: Application to a Micro-screw with Diameter of 800㎛) (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part II: M0.8급 마이크로 스크류 전조공정 적용))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • In this paper, it is proposed to produce high precision screws with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ ($M0.8{\times}P0.2$) by means of a cold thread rolling process. In this part II of the study, the focus is on the production and reliability testing of the prototype $M0.8{\times}P0.2$ micro-screw. Designs for two flat dies were developed with the aid of the literature and previous studies. Process parameters during the cold thread rolling process were established through FE simulations. The simulation results showed that the threads of the micro-screw are completely formed through the rolling process. Prototype $M0.8{\times}P0.2$ micro-screw were fabricated with a high precision thread rolling machine. In order to verify the simulation results, the deformed shape and dimensions obtained from the experiment were compared with those from the simulations. Hardness and failure torque of the fabricated micro-screw were also measured. The values obtained indicate that the CAE based process design used in this paper is very appropriate for the thread rolling of micro-sized screws.

Analysis and Experiments on the Thread Rolling Process for Micro-Sized Screws Part I: Process Parameter Analysis by Finite-Element Simulation (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part I: 유한요소 해석기반 공정변수 영향분석))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.581-587
    • /
    • 2011
  • The production of high-precision micro-sized screws, used to fasten parts of micro devices, generally utilizes a cold thread-rolling process and two flat dies to create the teeth. The process is fairly complex, involving parameters such as die shape, die alignment, and other process variables. Thus, up-front finite-element(FE) simulation is often used in the system design procedure. The final goal of this paper is to produce high-precision screw with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ (M0.8${\times}$P0.2) by a cold thread rolling process. Part I is a first-stage effort, in which FE simulation is used to establish process parameters for thread rolling to produce micro-sized screws with M1.4${\times}$P0.3, which is larger than the ultimate target screw. The material hardening model was first determined through mechanical testing. Numerical simulations were then performed to find the effects of such process parameters as friction between work piece and dies, alignment between dies and material. The final shape and dimensions predicted by simulation were compared with experimental observation.

Finite Element Analysis for Improvement of Folding Defects in the Forging Process of Subminiature Screws (초소형 나사 단조시 접힘결함 향상을 위한 유한요소해석)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2015
  • Recent trends to reduce the size of mobile electronics products have driven miniaturization of various components, including screw parts for assembling components. Considering that the size reduction of screws may degenerate their joining capabilities, the size reduction should not be limited to the thread region but should be extended to its head region. The screw head is usually manufactured by forging in which a profiled punch presses a billet so that plastic deformation occurs to form the desired shape. In this study, finite element (FE) analysis was performed to simulate the forging process of a subminiature screw; a screw head of 1.7 mm diameter is formed out of a 0.82 mm diameter billet. The FE analysis result indicates that this severe forging condition leads to a generation of folding defects. FE analyses were further performed to find appropriate punch design parameters that minimize the amount of folding defects.

An Investigation of Thread Rolling Characteristics of Titanium Micro-Screws according to Die Design Parameters (금형설계 변수에 따른 마이크로 티타늄 나사 전조공정의 성형 특성 고찰)

  • Lee, Ji Eun;Kim, Jong-Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Micro-screws can be defined by their outer diameter of generally less than 1 mm. They are manufactured by head forging and thread rolling processes. In this study, the thread rolling process was numerically analyzed for a micro-screw with a diameter and pitch of 0.8 and 0.2 mm, respectively. Through finite element (FE) analysis, the effects of two design parameters (die gap and chamfer height) on the dimensional accuracy were investigated. Three combinations of chamfer heights were chosen first and the corresponding die gap candidates selected by geometric calculation. FE analyses were performed for each combination and their results indicated that the concave chamfer height should be less than 0.3 mm, while a 10 ?m difference in the die gap might cause degeneration in dimensional accuracy. These results conclude that ultra-high accuracy is required in die fabrication and assemblies to ensure dimensional accuracy in micro-screw manufacturing.

A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers (Machining Center의 2차원 원호보간정밀도 진단 System의 개발)

  • Kim, Jeong-Soon;Namgung, Suk;Tsutusmi, Masacmi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

Performance assessment of an ultraprecision machine tool positioning system with a friction drive

  • Song Chang-Kyu;Shin Young-Jae;Lee Hu-sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.8-12
    • /
    • 2005
  • The positioning system for an ultra precision machine tool must be accurate to the order of a nanometer. Various feed drive devices have been proposed to achieve this resolution; currently, most attention is directed towards hydrostatic lead screws and friction drives. It has been reported that a positioning resolution accurate to an angstrom can be achieved using a twist-roller friction drive. Therefore, we manufactured an ultra precision positioning system driven by a twist-roller friction drive and assessed its performance when defining problems and finding solutions. Our study showed that the twist-roller friction drive is mechanically suitable for ultra precision positioning, but some considerations are required to obtain a higher resolution.

Surface Finishing of Ballscrew by Abrasive Wheel Brush (연마재함유 휠브러쉬에 의한 볼스크류 연마기술)

  • 이응숙;김재구;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1049-1052
    • /
    • 1997
  • The pupose of this study on the surface finishing is to examine the performance of brushing as a means of reducing the surface roughness of the precision theaded shafts in ball screw assemblies. Ball screws provide superior performance compared to other types of screw feeds in terms of static and dynamic rolling resistance,backlash,and wear characteristics. The Reduction of the surface roughness of the lead shaft in ball screw assembiles is essential for precision movement,high speed/low noise tracel, and for low wear/long life. To reduce machine dependent errors that would influence the surface roughness compared with other lapping or polishing techniques,experiments will be performed using special wire brushes to polish precision ground shafts. The best results were obtained using the Al /sab 2/O /sab3/ brushes, with the Al /sab 2/O /sab3/ #500 grit brush producing a surface finish of approximately 0.7 .mu.m, and the Al /sab 2/O /sab3/ #600 grit producing a surface finish of approximately 0.8 .mu.m. Both of these results were produced at the highest wheel polishing speed of 3520 rpm. The SiC #500 brush produced a surface roughness of approximately 1 .mu.m at 3520 rpm.

  • PDF