• Title/Summary/Keyword: Precision Position

Search Result 1,617, Processing Time 0.035 seconds

A Study on the Development of Hydraulic Cylinder with Magnetic Sensors for Detecting Absolute and Precise Position (자기센서를 이용한 절대위치 검출형 고정도 유압 실린더 개발에 관한 연구)

  • 박민규;이민철;양순용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.156-160
    • /
    • 1997
  • This paper introdues the development of hydraulic cylinder with magnetic sensor detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position witha little displacement by using algorithm for recognizing datum points, 1/4 divider algorithm and high precision algorithm improved position precision and robustness to noise etc. The solenoid valve and PWM control using saw-toothed wave are used for absolute position control of cylinder, respectively

  • PDF

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

The Position Decision Experiment of Magnetic Sensor in Ball-screw Driven Linear Stage (볼나사 구동 리니어 스테이지의 마그네틱 센서 위치결정 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.10-14
    • /
    • 2013
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decision. Though ball-screw driven linear stages equipped linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decision if they have not equipped the accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a magnetic sensor as a home switch of ball-screw driven linear stage by using capacitance probe.

The Position Decision Comparison Experiment of Hall and Photo Sensors in the Linear Stage (홀 센서와 포토 센서를 이용하는 선형 스테이지에서 위치결정 비교 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decisions. Though ball-screw driven linear stages equipped with encoders have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped accurate home sensors. High precision machining technology has become one of the most important aspects of the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. This study is performed to experimentally compare the repeatability for home position decisions in the case of photo sensors and hall sensors as a home switch of the ball-screw driven linear stage.

A Position Decision Experiment in Ball-screw Driven Linear Stage using a Photomicrosensor (포토 마이크로 센서를 이용한 볼나사 구동 리니어 스테이지의 위치결정 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.463-467
    • /
    • 2014
  • High precision machining technology has become one of the most important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though ball-screw driven linear stages equipped with linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a photo micro sensor as a home switch of a ball-screw driven linear stage by using a capacitance probe.

Development of Absolute Position Detecting Cylinder and Evaluation under the Load Disturbance (절대위치 검출형 실린더 개발 및 외란 부하에 대한 성능평가)

  • 김성현;박민규;홍영호;이민철;이만형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.68-75
    • /
    • 2003
  • This paper introduces the development of hydraulic cylinder with magnetic sensors detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position with a little displacement by using algorithm for recognizing datum points, 114 divider algorithm and high precision algorithm improved position precision. We alse evaluate the developed system under the load disturbance and add band pass filter to the previous's signal process circuit for the protecting magnetic sensors's saturation.

Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot (저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정)

  • 최경진;이용현;박종국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.

A Study on the Improvement of Positioning accuracy of ultra-precision stage (초정밀스테이지의 위치결정정도 향상에 관한 연구)

  • 황주호;송창규;박천홍;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.465-468
    • /
    • 2001
  • An aerostatic stage has frictionless behavior, so it has a advantage of investigation into positioning characteristics. A one-dimensional aerostatic ceramic stage with ballscrew driven and laser scale feedback system is manufactured, aiming at investigating positioning characteristic of ultra-precision stage. We confirm, this ceramic aerostatic stage has a 10nm micro resolution, and can be reduced mean of position error by compensation of numeric control command. By means of analyzing relationship of position error and change of temperature, we build a on-line compensation algorithm of position error from the measured temperature data. So we can improve repeatability of ultra-precision stage up to 34%($0.095{\mu}$) of the normal condition.

  • PDF

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator (Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가)

  • 김재열;김영석;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF