• Title/Summary/Keyword: Precision Metal Processing

Search Result 101, Processing Time 0.024 seconds

A Study on the Characteristics of Repair Welding for Mold Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 금형강의 보수용접 특성에 관한 연구)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.7-16
    • /
    • 2010
  • In this study, wire was used as the filler material for the laser repair welding, and the phenomenon in which the supplied filler material was melted and beaded down into the specimen was examined with varying laser powers and welding speeds. The optimal processing condition was found to be the laser power of 1,300 W, the welding speed and feed wire supply speed of 0.5 ml/in and the defocused distances of +2mm. At this time, the heat input(E) was $65{\sim}75\;J/mm^2$, and no internal defect occurred. When repair welding was carried out as the optimal processing for the part that had an external defect with the radius of 2mm, the filler metal was melted, resulting in the volume smaller than the defect part and thus causing the part unfilled. Therefore, it was found to be necessary to carry out repair welding two to three times by multiple passes rather than does it only once by single pass.

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (드릴가공시 신경망에 의한 공구 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영;김대성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1021-1024
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. In this paper, the vision system of the sensing methods of drill flank wear on the basis of image processing is used to detect the wear pattern by non-contact and direct method and get the reliable wear information about drill. In image processing of acquired image, median filter is applied for noise removal. The vision flank wear area of the drill was measured. Backpropagation neural networks (BPns) were used for no-line detection of drill wear. The neural network consisted of three layers: input, hidden and output. The input vectors comprised of spindle rotational speed, feed rates, vision flank wear, thrust and torque signals. The output was the drill wear state which was either usable or failure. Drilling experiments with various spindle rotational speed and feed rates were carried out. The learning process was peformed effectively by utilizing backpropagation. The detection of the abnormal states using BPNs achieved 96.4% reliability even when the spindle rotational speed and feedrate were changed.

  • PDF

A study on the establishment of an MES system that converges design, processing, and measurement during cutting (절삭가공 시 설계, 가공, 측정을 융합한 MES 시스템 구축에 관한 연구)

  • Park, Hae-Woong;Lee, Seung-Wook;Han, Heui-Bong;Yun, Jae-Woong;Choi, Kye-Kwang;Han, Seong-Ryeol;Kim, Kyung-A;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2021
  • In this paper, when manufacturing large/multi-mold parts (more than 30 core parts),A mold manufacturing (tolerance) management system was established through design-processing linkage.The mold manufacturing (tolerance) management system is a design-based measurement shape/measurement position determination system, M/C processing-linked measurement drive system,It is composed of four parts: CAD-linked measurement result analysis system and manager mold part quality management system.In addition, the constructed system was applied to the field and the effect of system construction was evaluated by comparing it with the existing process.As a result of the evaluation, the measurement precision is within 0.02mm, and the time it takes to measure after the end of processing is shorter than that of the existing process.(12 hours → 2 hours) It was shortened to 16.7%.In addition, it was confirmed that the time required for reprocessing after measurement was reduced by 25% (4 hours → 1 hour) compared to the existing process.

A study on the manufacture of cylindrical vaporization amplification sheets using centrifugal force (원심력을 이용한 원통형 증기화 증폭 시트 제작 연구)

  • Ko, Min-Sung;Wi, Eun-Chan;Yun, Yi-Seob;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • As technologies in various industrial fields develop, high-quality parts are required. In the past, precision parts were produced by the contact machining method, but the contact machining method has clear limitations. In order to solve this problem, research on a non-contact processing method has been conducted, and laser processing and electric discharge processing are representative. However, the non-contact method has a problem in that productivity is insufficient, and there is a problem that it takes a lot of time to continuously process microholes. Researchers have developed an electron beam drilling equipment for continuous processing of fine holes, and a vaporization amplification sheet to increase the processing efficiency of the equipment. In this study, a cylindrical vaporization amplification sheet using room temperature curing type silicon was fabricated, and the metal distribution and thickness uniformity of the produced sheet were analyzed. In order to manufacture a cylindrical vaporization amplification sheet, an equipment capable of using centrifugal force was developed, and a sample in which metal powder was evenly distributed and a constant thickness was produced.

Surface Defect Inspection Method of Iron Samples using Image Processing (영상처리를 이용한 용선시편의 표면결함 검사방법)

  • Ahn, H.S.;Jeong, K.W.;Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.78-88
    • /
    • 1995
  • For producing iron or steel products with good quality, the concentration of the material components should be analyzed quickly with high relability using XRF(Fluorescent X-Ray Spectrometer). Since the analysis results are much dependent upon the surface con- dition, the samples have to be prepared to have good test condition. This study presents an image processing system for inspecting the surface condition of the iron test sample. In order to use thd computer vision system, we need to develop a lighting device and image processing algorithm. For the adequate lighting device of inspection system, the indirect lighting device is contrived to cut the external light and provide uniform, stable and cold light. The image processing algorithm is aimed to reduce inspection time and to get similar analyzing results to those of the experienced operators. At first, the image processing algorithm checks whether the surface of the iron sample is ground well or not. Then, the defects; hole or dig are conted and surface condition is evaluated. In addition, the algorithm gives the reliability of the analyzing results in order to help operator's decision.

  • PDF

A Study on The Surface Roughness Of Metal Workpieces Machined by Ion Sputtering (이온 스파터 가공에 의하 금속표면의 표면거칠기에 관한 연구)

  • 한응교;노병옥;박재민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.747-754
    • /
    • 1990
  • Since Ion sputter machining can perform removing processing in atom or molecule units in vacuum state, it has the merit that high precision processing is possible. In this study, therefore, the effect of incidence ion beam is certified to processing amount and surface roughness when longtimed processing is applied. As a result, processing amount is made almost constant with time and the best processing condition is achieved when the incidencial angle of ion is 55.deg.. In addition, processing time for the good surface roughness is different respectively to the quality of material and longtimed processing has some defect for achieving good surface roughness.

A Study on Processing of Auxiliary Electrodes for OLED Lighting Devices Using a Reverse Gravure-Offset or Gravure-Offset Printing (리버스 그라비아 옵셋 또는 그라비아 옵셋 프린팅을 이용한 조명용 OLED 소자 보조전극 형성 공정 연구)

  • Bae, Sung Woo;Kwak, Sun Woo;Kim, In Young;Noh, Yong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.578-583
    • /
    • 2013
  • The lighting devices using organic light emitting diodes (OLEDs) are actively researched because of the various advantages such as high power efficiency and 2-dimensitonal lighting emitting. To commercialize those OLED lighting devices, the manufacturing cost must be downed to comparable price with conventional light sources. Here, we demonstrate a reverse gravure-offset or gravure off-set printed metal electrode for the auxiliary electrode for OLED lighting devices. For the fabricated OLED's auxiliary electrode, we used Ag nano-paste and printed metal grid structure with a line width and spacing of several ten and hundred micrometer by using gravure-offset printing. In the end the printing metal grid pattern are successfully achieved by optimization of various experimental conditions such as printing pressure, printing speed and printing delay time.

A study on burr generation of laser micro-hole drilling for copper foil (Copper 박막의 레이저 미세홀 가공이 버 생성에 관한 연구)

  • Oh J.Y.;Shin B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.873-877
    • /
    • 2005
  • The burr of micro drilling and micro cutting on thin metal film is a major obstacle to mass production for micro PCB boards in micro technologies of personal computing and telecom explosion. As the burr affects on the assembling process, it is necessary to study continuously on control or elimination of the burr. In order to get higher valued products, it is also needed to competitive techniques with the high resolution. In this paper, we studied experimentally the burr generation that when it is processed on the copper foil by laser in micro-hole machining. Unlike mechanical machining the burr produced on substrate is a resultants of melt and re-solidification of a melten metal which was heated and treated by laser. And higher laser energy increases the size of burr. Therefor in micro-drilling with laser, it is difficult to reduce the effects of burr for very thin metal sheets. We investigated the stale of the burr and analyzed the laser ablation Cu micro machining with respect to laser intensity and processing time.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko H.H.;Ahn H.G.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1980-1983
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of ide. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko Hyung-Hoon;Ahn Hyun-Gil;Lee Chan-H;Ahn Byung-Il;Moon Won-Sub;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.118-124
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excel lent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behavior. Among Finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focused on the drawing ability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision front Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.