• Title/Summary/Keyword: Precision Machine

Search Result 2,979, Processing Time 0.024 seconds

Structure Modeling of Machine Tools and Internet-based Implementation (공작기계 구조 모델링과 인터넷 기반 구현)

  • Hong Dong-Phyo;Seo Yoon-Ho;Kim In-Soo;Lee Gyu-Bong;Sheen Dong-Mok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.785-791
    • /
    • 2005
  • Reconfigurability of machine tools is one of the critical factors to realize the responsive manufacturing systems to satisfy the mass-customization production. This paper presents the methods to model and simulate the machine tools on Internet in response to change in the machining requirements. Specifically, a set of module combination rules and a modeling method of the structure of machine tools using connectivity graph are developed. In response to the user requirements, kinematic relations and structures of machine tools can be derived using the module combination rules and connectivity graph relationships. Internet-based simulator of machine tools is implemented and presented. The developed machine tool simulator can be used to verify the structure of machine tools derived from the user requirements.

  • PDF

Interference Check and NC Data Optimization through Machine Simulation in 5 Axises Machining of a Vehicle Parts of Aluminum Alloy (Al 합금 수송기계부품의 5축 가공에서 머신시뮬레이션을 통한 간섭체크 및 NC 데이터 최적화)

  • Kim Hae Ji;Lee In-Su;Kim Nam Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.52-59
    • /
    • 2004
  • This paper shows about the machine simulation embodiment when it happens NC equipment and between workpiece and interference in 5 axises machining of aluminium alloy a vehicles parts. And this research has been chosen because of the highest equipment interference occurrence rate at a vehicles parts processing of 5 axises horizontal machine. It can verify simulation and machining process through correlation of their dynamic relations, interference, collision as embodied virtual manufacturing system of machine, workpiece, and holder etc. That is necessary element in shape of machine tool, function and processing in imagination ball. Also, it verifies about interference and collision between NC equipment and workpiece, as it applied machine simulation to NC Data of actuality aircraft parts of BULKHEAD and FRAME. As the result of this study, by removing the equipment interference and collision element which creates NC data, the virtual machine tool it the efficiency of machine process has increased.

A Generalized Volumetric Error Modeling Considering Backlash in Machine Tools (방향성을 고려한 일반화된 공작기계의 입체오차 모델링)

  • Ahn, Kyoung-Gee;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.124-131
    • /
    • 2002
  • In this paper, an extended volumetric error model considering backlash in a three-axis machine tool was proposed and utilized for calculating the volumetric error of the machine tool at any position in three-dimensional workspace. Backlashes are interrelated; i.e. the angular backlash affects the straightness errors which then affect talc calculated squareness errors. Therefore, a new concept was introduced to define the backlash of squareness errors to incorporate the backlash of squareness error into the volumetric error, and the characteristics of the backlash of squareness error were investigated. The effects of backlash errors were assessed, by experiments. for 21 geometric errors of a machine tool. The backlash error was shown to be one of the systematic errors of a machine tool. And a generalized volumetric error model formulator for three-axis machine tools was developed, which allowed us to formulate machine tool synthesis error models far all possible machine tool configurations only with machine tool topology information. Based on these volumetric error model and model formulator, a computer-aided volumetric error analysis system was developed for a three-axis machine tool in this paper. Then the volumetric error at an arbitrary position can be obtained, and displayed in a three-dimensional graphic form.

A Study on Kinematic Analysis and Stitch Performance Evaluation of Industrial Lock Stitch Sewing Machine (공업용 본봉 제봉기의 기구해석 및 봉황성능평가에 관한 연구)

  • 전경진;신대영;홍창섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-297
    • /
    • 1994
  • The sewing machine is one of the oldest machine that has ever used, which is related with clothes' life. Modern sewing machines are divided into three groups by the sititch character, which are the lock stitch sewing machine group, the over lock sewing machine group and the specical sewing machine group. The lock stitch sewing machine have being used more than any others, which is also good model to study. This work is part of the improvement of an industrial lock stitch(ILS) sewing machine's design. The research objectives are the kinematic analysis and evaluations of stitch performance. The feed dog and the needle extreme's motion, which are important two part's motion in the sewing machine, are characterized by the stitch process and the needle trace. The needle trace is formulated as the stitch spacing, the stitch spacing's ratio(the static characteristic), and the stitch's phase difference(the dynamic characteristic). The tested ILS sewing machine is evaluated as a good static characteristic and a bad dynamic characteristic. Namely, a stitch spacing's ratio is 0.01~0.063(mm/mm) and a stitch's phase difference ratio is 0.06~0.13(mm/mm).

  • PDF

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis (다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석)

  • 김승우;장인철;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

Development of Real-time Precision Spraying System Using Machine Vision and DGPS (기계시각과 DGPS를 이용한 실시간 정밀방제 시스템 개발)

  • 조성인;정재연;김유용;남기찬;이중용
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • Several researches for site-specific weed control have tried to increase accuracy of weed detection with machine vision technique. However, there is a problem which needs substantial time to perform site-specific spraying. Therefore, new technology for real-time precision spraying system is needed. This research was executed to develope the new technology to estimate weed density and size in real time, and to conduct a real-time site-specific spraying. It would effectively reduce herbicide amounts applied for a crop field. The real-time precision spraying system consisted of a Differential Global Positioning System (DGPS) with an error of 2 cm, a machine vision system, a geomagnetic sensor for correction of view point of CCD camera and an automatic sprayer with separately controlled nozzle. The weed density was calculated with comparison between position information and a pre-designed electronic map. The position information was obtained in real time using the DGPS and the machine vision. The electronic map contained a position database of crops automatically constructed when seeding. The developed system was tested on an experimental field of Seoul National University. Success rate of the spraying was about 61%.

A study on the test workpiece for accuracy analysis of multi-axis turning and milling center (선반 및 밀링 겸용 다축 복합가공기의 정밀도 검증을 위한 표준공작물에 대한 연구)

  • Shin, Jae-Hun;Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.277-284
    • /
    • 2018
  • Recently, the demand for precision machining through multi-axis machining has been greatly increased. However, it is difficult to evaluate the geometrical accuracy of the machine tool because of its complicated geometric relationship. In this study, we organized the KS/ISO specifications which are distributed in various regulations, and re-organized the geometrical precision evaluation items of multi-axis machine tools. In addition, a test workpiece was proposed to evaluate and analyze the accuracy of a multi-axis machine tool, and a test workpiece was machined according to predetermined methods and procedures, and then the machined surfaces were measured using CMM. As a result, it was verified that the machining results of the standard workpiece and the precision of the machine tool were very similar qualitatively and quantitatively. From these results, it can be confirmed that the precision analysis of the multi-axis machine tool is possible only by machining the test workpiece.

Development of Precision Agricultural Machine Education Program (정밀 농업기계 교육프로그램의 발전)

  • Hong, S.J.;Kim, D.E.;Kang, D.H.;Kim, J.J.;Kang, J.G.;Chung, S.O.;Mo, C.Y.;Ryu, D.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • In Korea, the agricultural machinery market has been generally on the rise, and particularly the demand for the diverse agricultural machine is increasing due to the radical changes in agriculture, such as a high supply of the advanced and automated agricultural machine and an increase in aged or female farmer population. Therefore, this study analyzes the technical trends in the precision agricultural machine domestically and globally to guide the direction of development of the ICT-based machine. The investigation of the precision agricultural machine in this study focuses on the production technology through analyzing the trends in sensor-related technology, the decision-making research, variable treatment technology, and academic publication. The result shows that information processing technology including the sensor and the decision-making requires various measurement factors and the established technologies are continually being developed.

Designing and Manufacturing Technology of Sensor Node for Machine Tools (공작기계용 센서노드 설계 및 제작기술)

  • Jang, D.Y.;Kwon, O.S.;Park, M.J.;Kim, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.569-576
    • /
    • 2014
  • Sensor node means a device to include sensor, amplifier, and data acquisition (DAQ) equipment. The sensor converts physical signals to electric signals and weak signals from the sensor can be amplified through the amplifier. DAQ equipment converts analog signal to digital signal and collects converted digital signal. Since the sensor node is sensitive to the environment so that selection of mounting position and fixture design of sensor are applied differently depending on the characteristics of a target. This study is about designing and manufacturing sensor node to be used in a machine tool. The environment of machine tool is very severe due to noise, temperature fluctuation, and dust, etc. Hence, the sensor and amplifier must be designed and manufactured by considering the environmental issues. The designed and manufactured sensor node was tested for the reliability and effectiveness of the developed sensor nodes in the study.