• Title/Summary/Keyword: Precision Machine

Search Result 2,989, Processing Time 0.024 seconds

Design of Aspheric Lens by using Ray Tracing Method (광선추적방식을 적용한 비구면 렌즈 설계)

  • Kim, Soo-Yong;Han, Min-Sik;Kim, Tae-Ho;Park, Jung-Woo;Kim, Min-Ju;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • The optic industry is a high value-added advanced technology industry combined with the precision machine industry and the digital electronics industry. The aspheric lens, one of optic parts, is a key technology having a significant influence on the performance of optic equipment. So this study relates to designing an aspheric lens to which a ray-tracing method is applied. In the ray-tracing method, a refractive index of material is used, which take an advantage that the location of a light source and incident angle can be fixed, unlike the ray back-tracing scheme.

  • PDF

A Study on Automatic Compensation of Thermal Deformation Error for High Speed Feeding System (고속이송계의 열변형오차 자동보정에 관한 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • In the recent years, development of machine tool with high speed feeding system have brought a rapid increase in productivity. Practically, thermal deformation problem due to high speed is, however, become a large obstacle to realize high precision machining. In this study, therefore, the construction of automatic error compensation system to control thermal deformation in high speed feeding system with real time is proposed. To attain this purpose, high speed feeding system with feeding speed 60mm/min is developed and experimental equation for relationship between thermal deformation and temperature of ball screw shaft using multiple regression analysis is established. Furthermore, in order to analyze thermal deformation error, compensation coefficient is determined and thermal deformation experiments is carried out. From obtained results, it is confirmed that automatic error compensation system constructed in this study is able to control thermal deformation error within $15{\sim}20{\mu}m$.

  • PDF

Characteristic evaluation of microscopic precision in high speed machining (고속가공에서 미시적 정밀도의 특성 평가)

  • 김철희;김전하;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.352-357
    • /
    • 2001
  • In this study, residual stress was investigated to evaluate damaged layer in high speed machining through simulation. In machining steel(STDll), residual stress remaining in machined surface was mainly appeared as compressive stress. The scale of this damaged layer more depends on feed per tooth and radial depth than spindle speed. Damaged layer was measured by optical microscope and hardness method. The micro-structure of damaged layer was a martensite because of cutting force and cutting temperature. Thickness of damaged layer is increased with incresing of feed per tooth and radial depth.

  • PDF

Manufacturing Process of Micro-drill

  • Gunhoi Kim;Sunggu Lee;Jaekyung Lee;Kyusik Kwon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.287-293
    • /
    • 2001
  • Resently, reduction of industrial products in size and weight has increased by the application of micro-drill for gadgets of high precision and gave rise to a great interest in a micro-drilling. Due to the lack of tool stiffness and the chip Packing, micro-drilling requires not only the robust tool structure which has not affected by the vibration, but also the effective drilling methods designed to prevent tool fracture from cutting troubles. Firstly, this paper presents a new manufacturing process of micro-drill for improving the Product rate and an optimum shape of micro-drill for lengthening the tool life, and secondly between tool life and drilling torque acquired in the inprocess monitoring system.

  • PDF

Effect of the Number of Nozzle Scanning in Micro-Line Grooving of Glass by Powder Blasting (Powder Blasting을 이용한 유리의 미세 선형 홈 가공시 노즐 주사 횟수의 영향)

  • 박경호;김광현;최종순;박동삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.294-299
    • /
    • 2001
  • The old technique of sandblasting which has been used for decoration of glass surface has recently been developed into a powder blasting technique for various materials, capable of producing micro structures larger than 100 m. This paper describes the performance of powder blasting technique in micro-line grooving of glass and the effect of the number of nozzle scanning on the depth and width of line groove. Experimental results showed that increasing the no. of nozzle scanning resulted in the increase of depth and width in grooves. Increase of width which may cause several problems in the precision machining results from wear of mask film.

  • PDF

A study on dynamic behavior of bidirectional SMA Actuator with forced-cooling (강제공냉 차동식 형상기억합금 액츄에이터의 동작특성에 관한 연구)

  • 정상화;김현욱;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-52
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented fir its performance.

  • PDF

A Study on the Modeling and Analysis of Chatter in Turning Operation (선반가공시 채터 모델링과 분석에 관한 연구)

  • 윤문철;조현덕;김성근;김영국;조희근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.76-83
    • /
    • 2001
  • In this study, the static and dynamic characteristics of turning process was modelled and the analytic realization of regen-erative chatter mechanism was discussed. In this regard, we have discussed on the comparative assessment of recursive times series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision turning operation. In this study, simulation and experimental work were performed to show the malfunction behaviors. For this purpose, new Recursive Extended Instrument Variable Method(REIVM) was adopted for the on-line system identification and monitoring of a machining process. Also, we can apply REIVE algorithms in real process for the detection of chatter frequency and dynamic property and analyze the stability lobe of the system by changing a parameter of cutting dynamics in regenerative chatter mechanics, if it is stable or unstable, Also, The stability lobe of chatter was analysed.

  • PDF

Development of a Machining Error Estimation System for Vertical Lathes with Structural Deformation and Geometric Errors (구조변형과 기하학적 오차를 고려한 수직형 선반의 가공오차 해석시스템 개발)

  • 이원재;윤태선;김석일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.15-22
    • /
    • 1999
  • In this study, a machining error estimation system far vertical lathes with structural deformation and geometric errors, is realized based on the virtual manufacturing technologies. The positional and directional errors of cutting tool are determined by considering the geometric errors and dimensions of machine components and by introducing the equilibrium condition between the cutting force and structural deformation. Especially, the machining errors of vertical lathes are estimated by using the prescribed cutting test(JIS B 6331). The system can be implemented to evaluate the machining accuracies of vertical lathes at the design process and to design the high precision vertical lathes.

  • PDF

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 AM1 로봇의 위치 및 속도 제어)

  • 김종수;이병국;최석창;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.202-207
    • /
    • 2001
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Design of an Intelligent Integrated Control System Using Neural Network (뉴럴 네트워크를 이용한 지능형 통합 제어 시스템 설계)

  • 정동연;이우송;안인모;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.217-222
    • /
    • 2001
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for automatic test and assembling in S company.

  • PDF