• Title/Summary/Keyword: Precision Arm

Search Result 210, Processing Time 0.025 seconds

Estimation of Shoulder Flexion Torque and Angle from Surface Electromyography for Physical Human-Machine Interaction (물리적 인간-기계 상호작용을 위한 표면 근전도 신호 기반의 어깨 굴곡 토크 및 각도 추정)

  • Park, Ki-Han;Lee, Dong-Ju;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2011
  • This paper examines methods to estimate torque and angle in shoulder flexion from surface electromyography(sEMG) signals for intuitive and delicate control of robotic assistance device. Five muscles on the upper arm, three for shoulder flexion and two for shoulder extension, were used to offer favorable sEMG recording conditions in the estimation. The methods tested were the mean absolute value (MAV) with linear regression and the artificial neural network (ANN) method. An optimal condition was sought by varying combination of muscles used and the parameters in each method. The estimation performance was evaluated using the correlation values and normalized root mean square error values. In addition, we discussed their possible use as an estimation of motion intent of a user or as a command input in a physical human-machine interaction system.

A Development of the Self-Standable Mobile Robot Based on a Wheeled Inverted Pendulum Mechanism (자기-기립 가능한 차륜형 역진자 기구 기반의 이동로봇 개발)

  • Lee, Se-Han;Kang, Jae-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • In this research a Self-Standable mobile Robot with standing arms based on an Wheeled Inverted Pendulum is developed. Almost existing mobile robots have wide planar shape that is statistically stable and it is sometimes hard for them to run or steer on a narrow road. A Wheeled Inverted Pendulum based mobile robot has vertical shape that is upright-running and easily steering on a narrow road. It, however, requires actively balancing control and never restores the shape once it falls down. This research develops a Self-Standable mobile robot which equips standing arms and is able to change its chassis' posture freely from planar to vertical shape or vice versa.

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Development of a control method using both electric and pneumatic actuators for a heavy load handing robot (대중량물 취급용 로봇을 위한 전기-공압구동기를 사용한 복합구동 방식의 개발)

  • Park, S.D.;Jeong, K.W.;Youm, Y.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 1993
  • Pneumatic actuators have greater power to weight ratio than electric ones, but they have been rarely used as robotic actuators because of poor accuracy resulted from nonliearity of air. On the other hand, electric servo motors have glld controllability, but they have poor power to weight ratio. For the heavy load handling robot a combined actuating method was developed for vertical and horizontal axes of RISTBOT-ll which handles up to 250kgf load. In this paper, the control method is implemented and analyzed for the manufactured heavy load handling robot.

  • PDF

Kinematic Optimal Design of Excavator with Performance Analysis (굴삭기의 기구학적 최적설계와 성능해석)

  • 한동영;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.617-622
    • /
    • 1994
  • In this paper, we perform a two-stage, kinematic optimal design for 3 degree-of-freedom excavator system which consists of boom, arm, and bucket. The objective of the first stage is to find the optimal joint parameters which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the first stage is to find the optimal link parameters which maximize the isotropic characteristic throughout the workspace. It is illustrated that performances of the optimized excavator are improved compared to those of HE280 excavator, with respect to the described performace index and maximum load handling capacity.

  • PDF

A Study on the Development of Automatic Measurement Program for Fatigue of Car Devices (자동차 부품 내구력 자동측정 프로그램 개발에 관한 연구)

  • 조우상;김교형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.510-514
    • /
    • 1995
  • 설계 초기 단계에서 자동차 샤시 부품의 내구강도를 평가하는 것은 대단히 중요하므로 실제 전산수치해석을 통하여 예측도 행하고 있지만 양산 적용여부는 차량제작 후 실차 내구시험을 시행 후 결정되고 있다. 본 연구에서는 컴퓨터의 잇점을 적극 활용하여, 차량의 주요부품인 Lower Arm과 Rear Axle Housing 등의 내구시험에서 부품의 변형을 탐지하기 위한 자동 측정 프로그램을 개발하고자 한다. 사용한 프로그램은 IBM-PC 호환기종(80286, 80386, 80486)에 사용되는 Turbo-C 언어를, 한글입력을 위해서 한글 라이브러리 <한>을 사용하였다. 그리고사용자가 임의로 시스템 각 요소의 모듈(module)을 대치할 수 있도록 각 함수별로 서브루틴(subroutine)화 하였다.

  • PDF

Analysis of tension properties at roll changing process of a high speed printing machine (고속인쇄기 롤 교체과정의 장력특성 해석)

  • Lee B.J.;Kim S.H.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.281-282
    • /
    • 2006
  • Tension control performance is very important in high-speed printing machine. One of the major factors that effect to tension control performance is the process of roll changing. Even if the turret arm moves during roll changing process and the span length of the unwinding system varies, it is customary to neglect it in motion and tension control and to consider it as a disturbance. In this paper, its effect is modeled nonlinearly and compared with linear model, and an effect of an infeeder dancer is analyzed under the condition with no unwinder dancer. We verify the performance of the proposed method via simulation in the high-speed printing machine.

  • PDF

Optimal control of a flexible robot arm using singular perturbation model (유연 링크 로봇의 특이섭동모델 최적제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 1996
  • Linear controllers, such as LQG/LTR controller, have been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the linearized model upon which the controller is designed. In this study, singular perturbation model is tested in designing a LQG/LTR controller for a flexible link manipulator. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance of the proposed controller reaches reasonably to the one based on the full model.

  • PDF

주조/단조 공정에서 $A\ell$6061의 단조효과에 관한 연구

  • 권오혁;김형진;배원병;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.251-251
    • /
    • 2004
  • 이 연구에서는 주단조 공정을 자동차 부품인 low control arm 제조에 적용하였다. Al6061에 주단조 공정을 적용함므로써 재료비 감소와 기존의 스틸제품보다 경량화 효과를 얻을 수 있다는 것을 증명하기 위함이다. 첫째로 단조 재료인 A16061의 최적 주조조건을 찾기 위하여, 주조 실험은 알루미늄의 주입온도, 금형온도, 주입시간을 조절함으로써 수행되어졌다. 최적주조조건은 주입온도 $700^{\circ}C$, 금형온도 30$0^{\circ}C$, 주입시간 10초로 정하여졌다. 각각의 미세조직을 관찰하고 응력-변형률곡선을 구하기 위하여 열가단조실험은 빌렛온도, 변형률속도와 감소율을 기초로 하여 수행되어졌다.(중략)

  • PDF

Development of Process of A Force Sensorless Interference fit Assembly Robot System using Sliding Perturbation Observer (슬라이딩 섭동관측기를 이용한 힘 센서리스 억지끼워맞춤 조립로봇시스템 공정개발)

  • Byun, Gyu Ho;Moon, Young Geun;Yoon, Sung Min;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.243-251
    • /
    • 2014
  • In inference fit assembly process of the industrial robot, it basically needs the force data. One of the typical methods to get the force data is attaching torque sensors on the robot arm joint or end effector. This is effective way to reduce time delay and to improve preciseness of force control, but this method has several problems. To solve that problem, this paper suggests method which measures assembly force without torque sensor by using the sliding perturbation observer(SPO) and assembly process based on SPO to assemble successfully in inference assembly