• 제목/요약/키워드: Precision Agriculture

검색결과 273건 처리시간 0.03초

친환경 정밀농업을 위한 입제 변량살포기 개발(IV) - 살포성능 평가와 살포율에 따른 분두 조절 방법 - (Development of a Variable Rate Granule Applicator for Environment-Friendly Precision Agriculture (IV) - Evaluation of Application Performance and Adjustment Method of Blow Head According to Discharging Rate -)

  • 김영주;이중용
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.383-388
    • /
    • 2007
  • In precision farming, proper calibration and operation of a variable rate machine are critical to reduce input of agrochemicals and to ensure productivity and quality of agricultural products. As an effort to introduce precision farming to rice production in Korea, a pneumatic granular applicator was developed. This investigation intended to evaluate the application performance such as application accuracy, application uniformity and to suggest how to adjust the blow-heads to get uniform application pattern, and to suggest a practical way of adjustment of the blow-heads for uniform application. Tests to evaluate the application performance were conducted. The application uniformities (CV) in both transverse direction and longitudinal direction were less than 15% and application accuracy was greater than 81%. A simple method for adjusting the inserting length of blow-heads was suggested.

친환경 농업기술의 발전방향 (Prospective of Sustainable Agriculture in Korea)

  • 류순호
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1999년도 국제 심포지엄 Proceedings of International Symposium on 친환경농업과 기계화방향
    • /
    • pp.137-159
    • /
    • 1999
  • Over the last three decades, Korean farming system has been directed to maximum agricultural production and to increase farmer's income through adoption of high-yielding crop varieties and high input of agrochemicals . These farming practices have resulted in problems of water-quality deterioration, soil degradation , and food safety. At present, over 40 million tones of animal waste are bing produced annually, which amounts to disposing the waste at the annual rate of 20 tones per ha in the total area of farming land in Korea. Nearly a half of total available water resources is used as irrigation water predominantly for rice paddy field. Thus, non-point source contamination of the water resources has been linked to agriculture across the nation. However, the extent to which agriculture contributes to the water quality is not fully known. Recently, Korean government provided various institutional measures to reduce the negative impacts of agricultural practices on the environ ental quality, and the Agricultural Environment Act was also passed by the legislature in 1998 and became effective January 1999. This Act does not cover the broad spectrum of the sustainable agriculture ; thus, the limited incentives within this Act are arguably ineffective to control the non-point source pollution. Recently new bulk blending of fertilizers(BB fertilizer) are bing produced (100, 000 tones in 1998) with Government subsidies. The BB fertilizers are to balance N-P-K ratio in the soils . Although the use of the BB fertilizers are encouraged with Government subsidies, non-point source pollution is still serious and will become worse. Precision farming is regarded as a new means for sustainable agriculture. It is a new technology that modifies the existing techniques and incorporates new one such as GIS, GPS , differential applicator to produce a new set of tools for the farmer to use. Precision farming, however, has constraints for individual farming practices. For exam le , farm size or parcel unit of each farmer is too small to adopt the precision agriculture on farmhouse-hold bases and farmer's ability to adopt the new technology is limited. However, it would be appropriate to establish local or regional cooperatives to operate such a precision farming system. It is recommended that Government provide sufficient incentives to help establish local and/or regional cooperatives.

  • PDF

Time of Arrival range Based Wireless Sensor Localization in Precision Agriculture

  • Lee, Sang-Hyun;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • 제3권2호
    • /
    • pp.14-17
    • /
    • 2014
  • Precision agriculture relies on information technology, whose precondition is providing real-time and accurate information. It depends on various kinds of advanced sensors, such as environmental temperature and humidity, wind speed, light intensity, and other types of sensors. Currently, it is a hot topic how to collect accurate information, the main raw data for agricultural experts, monitored by these sensors timely. Most existing work in WSNs addresses their fundamental challenges, including power supply, limited memory, processing power and communication bandwidth and focuses entirely on their operating system and networking protocol design and implementation. However, it is not easy to find the self-localization capability of wireless sensor networks. Because of constraints on the cost and size of sensors, energy consumption, implementation environment and the deployment of sensors, most sensors do not know their locations. This paper provides maximum likelihood estimators for sensor location estimation when observations are time-of arrival (TOA) range measurement.

A Comprehensive Literature Study on Precision Agriculture: Tools and Techniques

  • Bh., Prashanthi;A.V. Praveen, Krishna;Ch. Mallikarjuna, Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제22권12호
    • /
    • pp.229-238
    • /
    • 2022
  • Due to digitization, data has become a tsunami in almost every data-driven business sector. The information wave has been greatly boosted by man-to-machine (M2M) digital data management. An explosion in the use of ICT for farm management has pushed technical solutions into rural areas and benefited farmers and customers alike. This study discusses the benefits and possible pitfalls of using information and communication technology (ICT) in conventional farming. Information technology (IT), the Internet of Things (IoT), and robotics are discussed, along with the roles of Machine learning (ML), Artificial intelligence (AI), and sensors in farming. Drones are also being studied for crop surveillance and yield optimization management. Global and state-of-the-art Internet of Things (IoT) agricultural platforms are emphasized when relevant. This article analyse the most current publications pertaining to precision agriculture using ML and AI techniques. This study further details about current and future developments in AI and identify existing and prospective research concerns in AI for agriculture based on this thorough extensive literature evaluation.

FIELD MAPPING FOR PADDY RICE

  • Lee, C-K.;M. Umeda;M. Iida;J. Yanai;T. Kosaki
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.254-261
    • /
    • 2000
  • Soil chemical properties, relief of field surface, SPAD values and grain yield were investigated in a 0.5ha paddy field in 1999 to obtain basic field information for precision agriculture. Descriptive statistics of field information showed that the coefficient of variation ranged from 1.63% to 38.7%. Field information showed a high spatial dependence for within paddy field. The ranges of spatial dependence were from 15m to 60m, respectively. Kriged maps enable the visualization and comparison the spatial variability of field information. The causes of spatial variability of the field information could be explained rationally by a field management map. Grain yield was negatively correlated with pH, relief values, whereas, was positively correlated with total C, total N, C/N ratio, mineralizable N, available P and exchangeable K, Ca at the significant level of 1 %.

  • PDF

Determination of Variable Rate Fertilizing Amount in Small Size Fields Using Geographic Information System

  • S. I. Cho;I. S. Kang;Park, S. H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.236-245
    • /
    • 2000
  • The feasibility of precision farming for small sized fields was studied by determining fertilizing amount of nitrogenous and calcareous to a cite specific region. A detailed soil survey at three experimental fields of 672㎡, 300㎡ and 140㎡ revealed a considerable spatial variation of the pH and organic matter(OM) levels. Soil organic matter was measured using Walkley-Black method and soil pH was measured with a pH sensor. Soil sample was obtained by Grid Node Sampling Method. The soil sampling depth was 10 - 20 cm from the soil surface. To display soil nutrient variation, a soil map was made using Geographic Information System (GIS) software. In soil mapping, soil data between nodes was interpolated using Inverse Distance Weighting (IDW) method. The variation was about 1 - 1.8 in pH value and 1.4 -7 % in OM content. Fertilizing Amount of nitrogenous and calcareous was determined by the fertilizing equation which was proposed by National Institute of Agricultural Science and Technology.(NIAST). The variation of fertilizing amount was about 3 - 11 kg/10a in nitrogenous and 70 - 140 kg/10a in calcareous. The results showed a feasibility of precision fertilizing for small size fields.

  • PDF

Automated Crop Production For the $21^{St}$ Century

  • Lu, F.M.
    • Agricultural and Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.59-62
    • /
    • 2000
  • After ten years of implementing the agricultural automation program in Taiwan, some positive effects and satisfactory results have been recognized by both the agricultural industry and local administrative bureaux. The automation of agriculture is a response to sophisticated demands for production and quality in countries with high labor costs. The development of sensor systems, control systems, precision agriculture systems, and engineering for plant culture systems will determine the degree of automation used for crop production in the 21st century. The engineering system will capitalize upon expertise from physiologists, pathologists, systems analysts, agronomists, horticulturists, computer programmers, economists, crop producers and managers in order to efficiently implement automated crop production.

  • PDF