• Title/Summary/Keyword: Precision Agriculture

Search Result 273, Processing Time 0.038 seconds

On-line Real Time Soil Sensor

  • Shibusawa, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Achievements in the real-time soil spectro-photometer are: an improved soil penetrator to ensure a uniform soil surface under high speed conditions, real-time collecting of underground soil reflectance, getting underground soil color images, use of a RTK-GPS, and all units are arranged for compactness. With the soil spectrophotometer, field experiments were conducted in a 0.5 ha paddy field. With the original reflectance, averaging and multiple scatter correction, Kubelka-Munk (KM) transformation as soil absorption, its 1st and 2nd derivatives were calculated. When the spectra was highly correlated with the soil parameters, stepwise regression analysis was conducted. Results include the best prediction models for moisture, soil organic matter (SOM), nitrate nitrogen (NO$_3$-N), pH and electric conductivity (EC), and soil maps obtained by block kriging analysis.

  • PDF

Yield Forecasting Method for Smart Farming (스마트 농업을 위한 생산량 예측 방법)

  • Lee, Joon-goo;Moon, Aekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.619-622
    • /
    • 2015
  • Recently, there are growing fluctuations of productivity and price caused by severe weather conditions in the agriculture. Yield forecasting methods have been studied to solve the problems. This paper predicted yield per area, production area, and elements of weather based on the linear equation. A yield is calculated by multiplying the production area times the yield per area that is compensated using the weighted sum of the elements of weather. In experiments, proposed method shows that a forecasting precision is the more than 90%.

  • PDF

Information Technology and Strategy for Innovative Commercial Farmers (정보기술(情報技術)을 활용한 상업농(商業農)의 경영혁신방안(經營革新方案))

  • Kwon, Yong-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.106-115
    • /
    • 1999
  • It will become necessary for farmers to adopt information technology into commercialized farming system, since its productivity is increasingly linked to how to exploit the agricultural information. The purpose of this study is to examine the current status of information technology and to suggest ways to utilize the information technology for innovative farm management. Internet should become more important instruments which farmers might utilize in order to collect and mine the agricultural information because of its rapidity, reliability and precision. Also farmers should be encouraged to adopt a GIS-based farm management decision support system and to integrate the market information and geographic information such as soil, water, temperature, etc. for optimal decision making. Another way of improving farm management is to make farmers use agricultural accounting software for individual farmers and develop farming simulation system which analyze a farmer's current financial condition and suggest how to improve it. Making home page would be major marketing strategy for farmers to promote the sales of agricultural products.

  • PDF

Analysis of Flavonoid Composition of Korean Herbs in the Family of Compositae and their Utilization for Health

  • Nugroho, Agung;Choi, Jae Sue;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Compositional differences in flavonoids are varied in the big family of Compositae. By summarizing our previous analytical studies and other scientific evidences, new strategy will be possible to further analyze flavonoids and utilize them for human health. The HPLC analytical method has been established in terms of linearity, sensitivity, accuracy, and precision. Herbs of the family of Compositae have considerable amounts of peroxynitrite ($ONOO^-$)-scavenging effects and their phenolic substances. These effects may contribute to the prevention of disease associated with excess production of $ONOO^-$, depending on the high content of flavonoid substances.

The Application of NIRS for Soil Analysis on Organic Matter Fractions, Ash and Mechanical Texture

  • Hsu, Hua;Tsai, Chii-Guary;Recinos-Diaz, Guillermo;Brown, John
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1263-1263
    • /
    • 2001
  • The amounts of organic matter present in soil and the rate of soil organic matter (SOM) turnover are influenced by agricultural management practice, such as rotation, tillage, forage plow down direct seeding and manure application. The amount of nutrients released from SOM is highly dependent upon the state of the organic matter. If it contains a large proportion of light fractions (low-density) more nutrients will be available to the glowing crops. However, if it contains mostly heavy fractions (high-density) that are difficult to breakdown, then lesser amounts of nutrients will be available. The state of the SOM and subsequent release of nutrients into the soil can be predicted by NIRS as long as a robust regression equation is developed. The NIRS method is known for its rapidity, convenience, simplicity, accuracy and ability to analyze many constituents at the same time. Our hypothesis is that the NIRS technique allows researchers to investigate fully and in more detail each field for the status of SOM, available moisture and other soil properties in Alberta soils for precision farming in the near future. One hundred thirty one (131) Alberta soils with various levels (low 2-6%, medium 6-10%, and high >10%) of organic matter content and most of dry land soils, including some irrigated soils from Southern Alberta, under various management practices were collected throughout Northern, Central and Southern Alberta. Two depths (0- 15 cm and 15-30 cm) of soils from Northern Alberta were also collected. These air-dried soil samples were ground through 2 mm sieve and scanned using Foss NIR System 6500 with transport module and natural product cell. With particle size above 150 microns only, the “Ludox” method (Meijboom, Hassink and van Noorwijk, Soil Biol. Biochem.27: 1109-1111, 1995) which uses stable silica, was used to fractionate SOM into light, medium and heavy fractions with densities of <1.13, 1.13-1.37 and >1.37 respectively, The SOM fraction with the particle size below 150 microns was discarded because practically, this fraction with very fine particles can't be further separated by wet sieving based on density. Total organic matter content, mechanical texture, ash after 375$^{\circ}C$, and dry matter (DM) were also determined by “standard” soil analysis methods. The NIRS regression equations were developed using Infra-Soft-International (ISI) software, version 3.11.

  • PDF

Estimating the Spatial Distribution of Rumex acetosella L. on Hill Pasture using UAV Monitoring System and Digital Camera (무인기와 디지털카메라를 이용한 산지초지에서의 애기수영 분포도 제작)

  • Lee, Hyo-Jin;Lee, Hyowon;Go, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.365-369
    • /
    • 2016
  • Red sorrel (Rumex acetosella L.), as one of exotic weeds in Korea, was dominated in grassland and reduced the quality of forage. Improving current pasture productivity by precision management requires practical tools to collect site-specific pasture weed data. Recent development in unmanned aerial vehicle (UAV) technology has offered cost effective and real time applications for site-specific data collection. To map red sorrel on a hill pasture, we tested the potential use of an UAV system with digital cameras (visible and near-infrared (NIR) camera). Field measurements were conducted on grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17, 2014. Plant samples were obtained at 20 sites. An UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number values of Red, Green, Blue, and NIR channels were extracted from aerial photos. Multiple linear regression analysis results showed that the correlation coefficient between Rumex content and 4 bands of UAV image was 0.96 with root mean square error of 9.3. Therefore, UAV monitoring system can be a quick and cost effective tool to obtain spatial distribution of red sorrel data for precision management of hilly grazing pasture.

Analysis of Spatial Variability in a Korean Paddy Field Using Median Polish Detrending (Median polish 기법을 이용한 한국 논의 공간변이 분석)

  • Chung, Sun-Ok;Jung, In-Kyu;Sung, Je-Hoon;Sudduth, Kenneth A.;Drummond, Scott T.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.362-369
    • /
    • 2008
  • There is developing interest in precision agriculture in Korea, despite the fact that typical Korean fields are less than 1 ha in size. Describing within-field variability in typical Korean production settings is a fundamental first step toward determining the size of management zones and the inter-relationships between limiting factors, for establishment of site-specific management strategies. Measurements of rice (Oriza Sativa L) yield, chlorophyll content, and soil properties were obtained in a small (100-m by 30-m) Korean rice paddy field. Yield data were manually collected on 10-m by 5-m grids (180 samples with 3 samples in each of 60 grid cells) and chlorophyll content was measured using a Minolta SPAD 502 in 2-m by 2-m grids. Soil samples were collected at 275 points to compare results from sampling at different scales. Ten soil properties important for rice production in Korea were determined through laboratory analyses. Variogram analysis and point kriging with and without median polishing were conducted to determine the variability of the measured parameters. Influence of variogram model selection and other parameters on the interpretation of the data was investigated. For many of the data, maximum values were greater than double the minimum values, indicating considerable spatial variability in the small paddy field, and large-scale spatial trends were present. When variograms were fit to the original data, the limits of spatial dependency for rice yield and SP AD reading were 11.5 m and 6.5 m, respectively, and after detrending the limits were reduced to 7.4 m and 3.9 m. The range of spatial dependency for soil properties was variable, with several having ranges as short as 2 m and others having ranges greater than 30 m. Kriged maps of the variables clearly showed the presence of both large-scale (trend) variability and small-scale variability in this small field where it would be reasonable to expect uniformity. These findings indicate the potential for applying the principles and technology of precision agriculture for Korean paddy fields. Additional research is needed to confirm the results with data from other fields and crops.d similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

Spatial Variability Analysis of Paddy Rice Yield in Field (필지내 벼 수량의 공간변이 해석)

  • 이충근;우메다미키오;정인규;성제훈;김상철;박우풍;이용범
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.267-274
    • /
    • 2004
  • Using geo-statistical method, yield data of different fields were analyzed to examine their field variability according to examining year, analysis method. Semivariogram and Kriged maps of geo-statistical analysis were used to examine their spatial dependence within a filed. The results obtained were as follows. 1) Descriptive statistical results of the yield showed that the yield and the difference of yield ranged from 100 to 946kg/10a and from 272 to 653kg/10a, respectively within a field. The coefficient of variation also ranged from 5.9 to 22.4 %. 2) More than 90% of yield data were placed between 350 to 850kg/10a. e results indicated that the gram mass flow sensor should have the measuring range from 0.34 to 0.82kg/s considering the yields when 4 rows head-feeding combine with 0.8 m/s of working speed was utilized. 3) A high spatial dependence was found within paddy field. The Q values ranged from 0.20 to 0.97, and the range of spatial dependence was from 6.9 to 53.3m. From this result, the rational sampling interval for yield investigation was estimated 6.9m. 4) Yields within a field between observation years showed considerable variability even if the field was evenly cultivated and managed. To apply precision agriculture in a paddy field, the field test should be continued to build a solid data-base including meteorological data, blight damage and insect damage.

Prediction of changes in distribution area of Scopura laminate in response to climate changes of the Odaesan National Park of South Korea

  • Kwon, Soon Jik;Kim, Tae Geun;Park, Youngjun;Kwon, Ohseok;Cho, Youngho
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.529-536
    • /
    • 2015
  • This study was performed to provide important basic data for the preservation and management of Scopura laminata, a species endemic to Korea, by elucidating the spatial characteristics of its present, potential, and future distribution areas. Currently, this species is found in the Odaesan National Park area of South Korea and has been known to be restricted in its habitat due to its poor mobility, as even fully grown insects do not have wings. Utilizing the MaxEnt model, 20 collection points around Odaesan National Park were assessed to analyze and predict spatial distribution characteristics. The precision of the MaxEnt model was excellent, with an AUC value of 0.833. Variables affecting the potential distribution area of S. laminata by more than 10% included the range of annual temperature, seasonality of precipitation, and precipitation of the driest quarter, in order of greatest to least impact. Compared to the current potential distribution area, no significant difference in the overall habitable area was predicted for the 2050s or 2070s. It was, however, demonstrated that the potential habitable area would be reduced in the 2050s by up to 270.3 km from the current area of 403.9 km; further, no potential habitable area was anticipated by the 2070s according to our predictive model. Taken together, it is anticipated that this endemic species could be significantly affected by climate changes, and hence effective countermeasures are strongly warranted for the preservation of habitats and species management.

Monitoring of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Residues in Arable Lands around Oil Reservoir (유류저장시설 인근 농경지 중 Benzene, Toluene, Ethylbenzene 및 Xylene (BTEX) 잔류량 모니터링)

  • Lim, Sung-Jin;Kim, Jin-Hyo;Choi, Geun-Hyoung;Cho, Nam-Jun;Hong, Jin-Hwan;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.414-418
    • /
    • 2014
  • BACKGROUND: Benzene, toluene, ethylbenzene and xylene (BTEX), which are volatile aromatic hydrocarbons and main constituents of gasoline, are neuro-carcinogenic organic pollutants in soil and groundwater. Korea Ministry of Environment has established the maximum permissible level of BTEX in arable soil to 1, 20, 50 and 15 mg/kg, respectively. METHODS AND RESULTS: To understand an arable soil contamination by BTEX, we collected 92 samples from the arable lands around oil reservoir, and analyzed the BTEX residue using a GC-MS with head-space sampler. A linear correlation between BTEX concentration and peak areas was detected with coefficient correlations in the range of 0.9807-0.9995. The method LOQ of BTEX was 0.002, 0.014, 0.084, and 0.038 mg/kg, respectively. Recoveries of 0.5 mg/kg BTEX were found to be 73.7-96.9%. The precision was reliable since RSD percentage (0.7-7.5%) was below 30, which was the normal percent value. Also, BTEX in all samples were detected under the LOQ. CONCLUSION: These results showed that the investigated arable soils around airport and oil reservoir in Korea were not contaminated by oils.