• Title/Summary/Keyword: Precise measurement

Search Result 1,027, Processing Time 0.026 seconds

The Suggestion of Effective Measurement Techniques for Positioning Under Poor GPS Reference Network Condition

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.539-547
    • /
    • 2013
  • This research is suggesting the most effective positioning method for GPS based positioning when no GPS reference point is available in the neighborhood. For this purpose, we carried out positioning of the IGS realtime observatories in Australia in various conditions. According to the research, we were certainly assured the one reference point with a short baseline length is more effective for differential positioning than multiple reference points with a long baseline distance beyond 1,000km and suggested the precise point positioning based positioning method can be an excellent substitute when no reference point is available around an unknown point. The research result may be used as the basic data for accurate positioning in poor reference point environments, especially in Antarctica.

Modified ORB-SLAM Algorithm for Precise Indoor Navigation of a Mobile Robot (모바일로봇의 정밀 실내주행을 위한 개선된 ORB-SLAM 알고리즘)

  • Ock, Yongjin;Kang, Hosun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.205-211
    • /
    • 2020
  • In this paper, we propose a modified ORB-SLAM (Oriented FAST and Rotated BRIEF Simultaneous Localization And Mapping) for precise indoor navigation of a mobile robot. The exact posture and position estimation by the ORB-SLAM is not possible all the times for the indoor navigation of a mobile robot when there are not enough features in the environment. To overcome this shortcoming, additional IMU (Inertial Measurement Unit) and encoder sensors were installed and utilized to calibrate the ORB-SLAM. By fusing the global information acquired by the SLAM and the dynamic local location information of the IMU and the encoder sensors, the mobile robot can be obtained the precise navigation information in the indoor environment with few feature points. The superiority of the modified ORB-SLAM was verified to compared with the conventional algorithm by the real experiments of a mobile robot navigation in a corridor environment.

A study on the Development of a Precise Ratio Transformer (초정밀 비례변성기 개발에 관한 연구)

  • Kim, Han-Jun;Kang, Jeon-Hong;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.603-604
    • /
    • 2005
  • A precise ratio transformer which is used to a ratio arm of a precise impedance measurement bridge at low frequencies was developed. The developed ratio transformer has the ratio taps of 1:1, 2:1, $\cdots$, to 10:1 in order to measure the primary impedance standards by substitution and special winding techniques for 10:1 ratio that is used frequently for impedance build up/down. The calibration results of the transformer has inphase and quadrature error of $0.073\times10^{-6}$ and $0.14\times10^{-6}$ respectively at 1.6 kHz.

  • PDF

A Study for Implementation of Density Measurement Equipment for Asphalt Pavement based on the electromagnetic capacitance

  • Park, Young-Ho;Kim, Gun-Kyun;Nor, Jeong-Keun;Ha, Jae-Kwon
    • International Journal of Contents
    • /
    • v.6 no.4
    • /
    • pp.39-42
    • /
    • 2010
  • In this paper we developed density measurement equipment for Asphalt Pavement based on the electromagnetic capacitance. This kind of Non-Nuclear Density Gauges technology and products is used or studied in USA, Finland, Sweden as standardization of authorized method for pavement density measurement. Effective permitivity of pavement asphalt is characterized in electromagnetic capacitance by the asphalt material, mixed ratio, and harden grade of pavement asphalt. We can get a density value of asphalt by replacing value of electromagnetic capacitance with standard density value and characteristic transformation curve. We are conformed that measurement data according to temperature, humidity, and real field asphalt of our density measurement equipment can be a precise value.

Assessment on shock pressure acquisition from underwater explosion using uncertainty of measurement

  • Moon, Seok-Jun;Kwon, Jeong-Il;Park, Jin-Woo;Chung, Jung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.589-597
    • /
    • 2017
  • This study aims to verify experimentally the specifications of the data acquisition system required for the precise measurement of signals in an underwater explosion (UNDEX) experiment. The three data acquisition systems with different specifications are applied to compare their precision relatively on maximum shock pressures from UNDEX. In addition, a method of assessing the acquired signals is suggested by introducing the concept of measurement uncertainty. The underwater explosion experiments are repeated five times under same conditions, and assessment is conducted on maximum quantities acquired from underwater pressure sensors. It is confirmed that the concept of measurement uncertainty is very useful method in accrediting the measurement results of UNDEX experiments.

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

On-Machine Measurement of an Optical Surface by Hartmann Test (하트만 방법에 의한 광학면의 기상측정)

  • 김용관;오창진;이응석;김옥현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.474-480
    • /
    • 2002
  • Aspheric optical lenses and mirrors are widely used in recent. It is more difficult to manufacture and measure the aspherical optics compared to conventional spherical ones. The interferometric optical test is common for the measurement of spherical optical surface. But the application of the interferometry to the measurement of aspheric surface is difficult because it needs a precise null corrector and very careful environmental conditions such as keeping constant temperature, humidity, atmospheric pressure and vibrations. To enhance productivity of optics manufacturing on-machine measurement and correction has been developed in this study. For practical applications, robustness of the measurement method to environments is more important. For the purpose an optical OMM(On-Machine Measurement) system has been developed using Shack-Hartmann test which has robustness to the environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by least square fitting. The measured result of the developed only system gives the maximum deviation only in 200 nm from the result measured by a commercial Fizeau interferometer Wyko 6000.

  • PDF

Case Study of Coordinate Measurement during Construction of Long-Span Irregular Curved Roof Layers (장경간 비정형 곡면 지붕층의 시공중 좌표 계측 사례 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.14-15
    • /
    • 2019
  • In this paper, it was tried to prove the possibility and effect of coordinate measurement by using MEP layout equipment at the construction stage, and to propose a method to improve measurement accuracy during construction. For this study, the passenger terminal site, which is a long span structure, was selected and compared with three dimensional CAD drawings and construction measurement results using MEP layout equipment for the precise construction of long-span irregular curved roof layers. As a result, it was found that it is possible to construct three-dimensional curved roof layers using MEP layout equipment through measurement and analysis.

  • PDF

TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER (지구저궤도 GPS 수신기의 시험 및 성능 분석 방법)

  • Chung Dae-Won;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. Recently most of satellites use GPS receiver as navigation solution for finding satellite position. However, the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation. Post-processing concepts such as Precise Orbit Determination (POD) are recently applied to satellite data processing to improve satellite position accuracy. The POD uses raw measurement data instead of navigation solution of GPS receiver. The performance of raw measurement data depends on raw measurement data accuracy and tracking loop algorithm of GPS receiver. In this paper, a method for evaluating performance of raw measurement data is suggested. Test environment and procedure of the low earth orbit satellite acquiring for navigation solution of GPS receiver and navigation solution of POD are described. In addition, accuracy on navigation solution of GPS receiver, raw measurement data, and navigation solution of POD are analyzed. The proposed method can be applicable to general low earth orbit satellite.

Variation Factor Assessment of Radial Artery Pulse by the Tonometry Angle of the Pulse Pressure Sensor (토노메트리 방식 맥파 측정의 가압 각도에 따른 변동성 평가)

  • Jung, Chang Jin;Jo, Jung Hee;Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.138-142
    • /
    • 2016
  • A pulse measurement by tonometry provides useful information for diagnosis, including not only blood pressure and heart rate but also parameters for estimating a condition of the cardiovascular system. Currently, various pulse measurement devices based on the tonometry have been developed. A reliability of these devices is determined by a positioning technic between the sensor and the blood vessel and a controlling technique of the pressurization level. An angle of the sensor for the pulse measurement seems to be highly related with a measured signal, however, the objective studies for this issue have been not published. In this paper, the variation of the pulse signals by tonometry direction was experimentally assessed according to the angle of the sensor. In order for guaranteeing the repeatability of the experiment, we used a pulse generator device, which can generate human pulse signal by using silicon tube and fluid pump, and developed a structure for precise adjustment of the angle and the pressurization level of the sensor. The angle of the sensor was acquired by an inclinometer, which was attached at the opposite side of the sensor. As results, a coefficient of variation (CV) of a maximum amplitude (MA) of the pulse wave was largely increased over the angle range of $-9{\sim}9^{\circ}$. Furthermore, the changes of the pulse shape showed different aspects according to the sign of the angle tilted along the blood vessel. It is expected that the results of this study can be helpful for developing more precise pulse measurement devices based on the tonometry and applying in clinic.