• Title/Summary/Keyword: Precipitation trend

Search Result 272, Processing Time 0.032 seconds

The Analysis of Climate Change in Haiyan County

  • Yu, Wenzheng;Zhang, Hanxiaoya;Chen, Tianliang;Liu, Jing;Shen, Yanbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3941-3954
    • /
    • 2020
  • In this paper, the climate change in Haiyan County in recent decades was analyzed in detail with the methods of moving average, Mann-Kendall non-parametric mutation test and wavelet analysis. According to the variation trend of meteorological factors such as temperature, relative humidity, wind speed, pan evaporation and precipitation in recent decades, the climate of Haiyan County has a tendency of drought, which is becoming more and more serious. From the results of the analysis, the sunshine hours and the air temperature in Haiyan County have an obvious upward trend. The average surface temperature has increased by 2.75 ℃ from 1976, and its largest increase occurred in the late 1970s and 1980s. At this stage, the average surface temperature increased by 1.37 ℃. The relative humidity has a decreasing trend that has decreased by 2.75%. From 1976 to the present, there are two quasi-3a cycles and one quasi-6a cycle. The precipitation and evaporation showed the opposite change trend, in which the trend of precipitation fluctuated upward, while the trend of evaporation showed a fluctuating downward tendency, which led to the serious loss of water in the feeding area. The wind direction in Haiyan County are mainly from west to east, and its wind speed has a trend of slight increase.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Changes in the Spatiotemporal Patterns of Precipitation Due to Climate Change (기후변화에 따른 강수량의 시공간적 발생 패턴의 변화 분석)

  • Kim, Dae-Jun;Kang, DaeGyoon;Park, Joo-Hyeon;Kim, Jin-Hee;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.424-433
    • /
    • 2021
  • Recent climate change has caused abnormal weather phenomena all over the world and a lot of damage in many fields of society. Particularly, a lot of recent damages were due to extreme precipitation, such as torrential downpour or drought. The objective of this study was to analyze the temporal and spatial changes in the precipitation pattern in South Korea. To achieve this objective, this study selected some of the precipitation indices suggested in previous studies to compare the temporal characteristics of precipitation induced by climate change. This study selected ten ASOS observatories of the Korea Meteorological Administration to understand the change over time for each location with considering regional distribution. This study also collected daily cumulative precipitation from 1951 to 2020 for each point. Additionally, this study generated high-resolution national daily precipitation distribution maps using an orographic precipitation model from 1981 to 2020 and analyzed them. Temporal analysis showed that although annual cumulative precipitation revealed an increasing trend from the past to the present. The number of precipitation days showed a decreasing trend at most observation points, but the number of torrential downpour days revealed an increasing trend. Spatially, the number of precipitation days and the number of torrential downpour days decreased in many areas over time, and this pattern was prominent in the central region. The precipitation pattern of South Korea can be summarized as the fewer precipitation days and larger daily precipitation over time.

Application of trend surface analysis(TSA) to a precipitation modification study over urban areas in the southern United States of America (미국 남부지역의 도시화로 인한 강수변화 연구에 대한 경향면 분석의 적용)

  • Choi, Young Eun;Henderson, Keith G.
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.4
    • /
    • pp.333-351
    • /
    • 1995
  • Trend surface analysis (TSA) was selected to estimate a natural trend in precipitation and to examine urban influences on precipitation over five urban areas (Houston, Dallas, and San Antonio, TX; New Orleans, LA; and Memphis, TN) in the southern United States. TSA was applied to monthly, seasonal and annual normal precipitation data for the period of 1961-1990. Winter and spring have more trends than summer and fall and the period of November through March have more marked trends than the period of April through October in all study areas except the Houston area. Residual maps for Houston, Dallas and San Antonio have positive residuals in the city and downwind during summer indicating that urban effects on precipitation enhancement in these areas do exist during these seasons after eliminating the natural precipitation variations. Summer residual maps for New Orleans and Memphis have no distinct precipitation increases due to urban effects. The June residual map in New Orleans and the July residual map in Memphis have positive values in the city, but the magnitude of values is smaller than other cities.

  • PDF

Analysis of Long-term Variations of Sunshine Duration and Precipitation Intensity Using Surface Meteorological Data Observed in Seoul and Busan in Korea (서울과 부산에서 관측된 일조 시간 및 강수 강도의 장기 변동 분석)

  • Lee, Hyo-Jung;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2009
  • In other to interpret the long-term variations of sunshine duration, cloud lifetime, and precipitation intensity observed in and around Seoul and Busan for the period from 1986 to 2005, aerosol indirect effect was employed and applied. For the identification of long-term trend of aerosol concentration, observed visibility and AOT of AERONET sunphotometer data were also used over the same regions. The result showed that the time series of visibility was decreased and those of AOT increased, especially trends were remarkable in 2000s. In both regions, occurrence frequencies of observed cloudiness (cloud amount ${\leq}6/10$) and strong precipitation (rain rate > $0.5mmhour^{-1}$) have been steadily increased while those of cloudiness (cloud amount > 7/10) and weak precipitation (rain rate ${\leq}0.2mmhour^{-1}$) decreased. These results are corresponding to the trend of both visibility and AERONET data, implying the aerosol indirect effect that makes size of cloud droplet reduce, cloud life-time longer and precipitation efficiency decreased. Our findings demonstrate that, although these phenomena are not highly significant, weather and climate system over Korean urban area have been changed toward longer lifetime of small cloudiness and increasing precipitation intensity as a result of increased aerosol indirect effect.

Analysis for Precipitation Trend and Elasticity of Precipitation-Streamflow According to Climate Changes (기후변화에 따른 강우 경향성 및 유출과의 탄성도 분석)

  • Shon, Tae Seok;Shin, Hyun Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.497-507
    • /
    • 2010
  • Climate changes affect greatly natural ecosystem, human social and economic system acting on constituting the climate system such as air, ocean, life, glacier and land, etc. and estimating the current impact of climate change would be the most important thing to adapt to the climate changes. This study set the target area to Nakdong river watershed and investigated the impact of climate changes through analyzing precipitation tendency, and to understand the impact of climate changes on hydrological elements, analyzed elasticity of precipitation-streamflow. For the analysis of precipitation trend, collecting the precipitation data of the National Weather Service from major points of Nakdong river watershed, resampling them at the units of year, season and month, used as the data of precipitation trend analysis. To analyze precipitation-streamflow elasticity, collecting area average precipitation and long-term streamflow data provided by WAMIS, annual and seasonal time-series were analyzed. In addition, The results of this study and elasticity, and other abroad study compared with the elasticity analysis and the validity of this study was verified. Results of this study will be able to be utilized for study on a plan to increase of flood control ability of flooding constructs caused by the increase of streamflow around Nakdong river watershed due to climate changes and on a plan of adapting to water environment according to climate changes.

Trend analysis and wavelet transform of time series of precipitation including the Chukwookee observation in Seoul (측우기 자료를 포함한 서울 강수량 시계열에 대한 추세분석 및 파엽분석)

  • 정현숙;박정수;임규호;오재호
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.525-540
    • /
    • 2000
  • Characteristics of precipitation in Seoul have been examined by using long-term observational data. Precipitation records from modern rain gauges were used for 1908-1996, together with the traditional Korean rain gauge (called Chukwookee) observations for 1777-1907. A linear trend analysis of seasonal total rainfall shows no significant trends over the last 200 years A wavelet transform analysis was performed to figure out the transient variations of precipitation.

  • PDF

The Variations of Interstational and Interseasonal Rainfall in South Korea (남한의 지역간, 계절간 강수량의 특성)

  • 최희구
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.62-69
    • /
    • 1978
  • Interstational and interseasonal analyses of the correlation and variability in the seasonal and annual precipitation for 10 basic synoptic stations in South Korea, on the basis of rainfall record of over 40 years, are carried out. It is found that the climatic regions of precipitation could be classified by means of the interstational analysis for the correlations. Corrleation coefficients in interstational relationship of precipitation are lowest in autumn which characterizeds a strong locality while the highest value shows a relatively weak locality in winter. Interseasonal relationship between summer and winter precipitation shows mostly 10 percent significant level with all positive values. The magnitude of the variation coefficients are appeared to be in the order of winter, autumn, spring and summer. It is shown that the highest which is winter ranges between 0.33 0.58, and for the lowest summer, 0.26-0.44, respectively in the areal distribution of the coefficient. The secular changes of the variation coefficient in the recent trend show increases in spring at two station; Seoul and Incheon, in summer at Busan and in autumn at two stations; Busan and Incheon while in winter show devreases at the whole stations. An annual variation seems to show generally a constant trend as whole for all the stations.

  • PDF

Analysis of the Variability of Annual Precipitation According to the Regional Characteristics (지역특성별 연강수특성 변화분석)

  • Kim, Gwang-Seob;Kim, Jong-Pil;Lee, Gi-Chun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.113-125
    • /
    • 2011
  • In this study, recent trends of the annual precipitation, the annual maximum precipitation of different durations and the rain days over several thresholds(i.e. 0, 10, 20, 40, 60 and 80 mm/day) according to the different local features were analyzed using daily precipitation data of 59 weather stations between 1973 and 2009. To analyze the variability according to the regional characteristics, 59 weather stations were classified by elevations, latitudes, longitudes, river basins, inland or shore(east sea, south sea, west sea) area and the level of urbanization. Results demonstrated that overall trend of variables increases except rain day. Results according to the regional characteristics showed that the increase trend becomes stronger with elevation increase. The increase trend of Han river basin is largest and that of Youngsan river basin is smallest. Also the increase trend becomes stronger with latitude increase and that of East coast is larger than that of South coast since it may be caused by the regional difference of elevation. The increase trend of urban area is larger than that of rural area. Overall trend showed that increase trend becomes stronger with elevation and latitude increase.

Trend analysis of aridity index for southeast of Korea

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.193-193
    • /
    • 2017
  • Trend analysis can enhance our knowledge of the dominant processes in the area and contribute to the analysis of future climate projections. The results of previous studies in South Korea showed that southeast regions of Korea had the highest value of evapotranspiration. Thereby, it is of interest to determine the trend analysis in hydrological variables in this area. In this study, the recent 35 year trends of precipitation, reference evapotranspiration, and aridity index in monthly and annual time scale will be analyzed over three stations (Pohang, Daegu, and Pusan) of southeast Korea. After removing the significant Lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann-Kendall test was used to detect the trends. Also, the slope of trend of the Mann-Kendall test was determined by using Theil-Sen's estimator. The results of the trend analysis of reference evapotranspiration on the annual scale showed the increasing trend for the three mentioned stations, with significant increasing trend for Pusan station. The results obtained from this research can guide development if water management practices and cropping systems in the area that rely on this weather stations. The approaches use and the models fitted in this study can serve as a demonstration of how a time series trend can be analyzed.

  • PDF