• Title/Summary/Keyword: Precipitation of nitrogen

Search Result 231, Processing Time 0.023 seconds

Effect of Al Addition on the Surface Nitrogen Permeation Treatment of 13%Cr Stainless Steels (13%Cr 스테인리스강의 표면 질소침투처리에 미치는 Al첨가의 영향)

  • Yoon, S.S.;Kim, K.D.;Lee, H.W.;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.221-230
    • /
    • 1999
  • The surface nitrogen permeation of Al alloyed 0.14%C-13%Cr stainless steels was investigated after heat treating at $1050^{\circ}C{\sim}1150^{\circ}C$ in the nitrogen gas atmosphere. The strong affinity between Al and nitrogen permeates the nitrogen through the interior of the steels. Two precipitates of round type and needle type are observed at the surface layer. These precipitates mainly consist of AlN containing plenty of aluminum. The surface layer of 0.53%Al alloyed specimen shows ferrite phase, while the surface layers of 1.65%Al and 2.27%Al alloyed specimens appear ${\gamma}$ plus ${\alpha}$ phases. The depth of nitrogen permeation depends upon the Al content and microstructure of the matrix. The 1.65%Al alloyed specimen representing ${\alpha}+{\gamma}$ matrix phases at the nitrogen permeation temperature shows the maximum case depth in this experiment. Although the surface hardness increases by raising the Al content of the specimen owing to the increase of nitride precipitation density, the nitride precipitation deteriorates the corrosion resistance in the solution of HCl, $H_2SO_4$, and $FeCl_3$.

  • PDF

Source Identification of Nitrate contamination in Groundwater of an Agricultural Site, Jeungpyeong, Korea

  • 전성천;이강근;배광옥;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.63-66
    • /
    • 2003
  • This study applied a hydrogeological field survey and isotope investigation to identify source locations and delineate pathways of groundwater contamination by nitrogen compounds. The infiltration and recharge processes were analyzed with groundwater-level fluctuation data and oxygen-hydrogen stable isotope data. The groundwater flow pattern was investigated through groundwater flow modeling and spatial and temporal variation of oxygen isotope data. Based on the flow analysis and nitrogen isotope data, source types of nitrate contamination in groundwater are identified. Groundwater recharge largely occurs in spring and summer due to precipitation or irrigation water in rice fields. Based on oxygen isotope data and cross-correlation between precipitation and groundwater level changes, groundwater recharge was found to be mainly caused by irrigation in spring and by precipitation at other times. The groundwater flow velocity calculated by a time series of spatial correlations, 231 m/yr, is in good accordance with the linear velocity estimated from hydrogeologic data. Nitrate contamination sources are natural and fertilized soils as non-point sources, and septic and animal wastes as point sources. Seasonal loading and spatial distribution of nitrate sources are estimated by using oxygen and nitrogen isotopic data.

  • PDF

A Study on the Chemical Treatment Techniques of High Concentration Ammonia Nitrogen in Food Wastewater

  • Tae-Hwan JEONG;Su-Hye KIM;Woo-Taeg KWON
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.3
    • /
    • pp.33-36
    • /
    • 2023
  • Purpose: Since the food wastewater contains a high concentration of nitrogen, it is very important to find a way to efficiently remove it. Research design, data and methodology: A total of four experiments were conducted under different conditions to remove ammonia nitrogen present in the food wastewater. The experiment was designed by adding sodium hypochlorite to the raw food wastewater and varying conditions such as pH control, aeration/precipitation, and stirring. Results: The ammonia nitrogen removal rate in Experiment 1 was about 12% (sodium hypochlorite added), ammonia nitrogen increased about 4.7% in Experiment 2 (sodium hypochlorite added after aeration/precipitation in a bioreaction tank, stirring), and decreased about 52.5% (sodium hypochlorite added after controlling and stirring). Conclusions: When the concentration of sodium hypochlorite was high, ammonia nitrogen was best removed, and the pH was adjusted to 12, and sodium hypochlorite was added after stirring, and the removal was the second best. If the method of this study is further studied and developed, it can be basic data for ammonia nitrogen removal in the future.

A Study on Nitrogen and Phosphorus Removal in FNR Process (FNR process를 이용한 하수처리장의 질소.인의 제거에 관한 연구)

  • Cho Il-Hyoung;Lee Nae-Hyun;Lee Seung-Mok;Kim Young-Kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.571-577
    • /
    • 2006
  • This study make a comparison between the phosphorus removal performance of FNR(Ferrous Nutrient Removal) process and A/O process by the laboratory experiments. For simultaneous removal of phosphorus, iron electrolysis was combined with oxic tank. Iron precipitation reactor on the electrochemical behaviors of phosphorus in the iron bed. The phosphorus removal in FNR process was more than A/O process. Iron salts produced by iron electrolysis might help to remove COD and nitrogen. And the demanded longer SRT is the more removes the removes COD, nitrogen, and phosphorus. Also, FNR process of sludge quantity more reduce than A/O process to input cohesive agents.

Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres (공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교)

  • Choi, Woonghee;Park, Se-Ryen;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

High Temperature Precipitation Behavior of High-Nitrogen Duplex Stainless Steel (고질소 2상 스테인리스강의 고온 석출거동)

  • Bae, Jong-In;Kim, Sung-Tae;Lee, Tae-Ho;Ha, Heon-Young;Kim, Sung-Joon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.93-103
    • /
    • 2011
  • Precipitation behavior of high-nitrogen duplex Fe-24Cr-7Mn-4Ni-4Mo-0.43N stainless steel aged at $850^{\circ}C$ was investigated using scanning transmission electron microscopy. Based on the analyses of selected area diffraction patterns, four kinds of precipitates (intermetallic sigma (${\sigma}$) and chi (${\chi}$), $Cr_2N$ and secondary austenite) were identified. At the ferrite/austenite phase boundary, the ${\sigma}$ phase and secondary austenite were formed via ${\alpha}{\rightarrow}{\gamma}+{\sigma}$ eutectoid reaction. The precipitation of $Cr_2N$ occurred at the austenite grain boundary as well as the interior of the ferrite. The intermetallic ${\chi}$ phase also formed within the ferrite and showed a cube-cube orientation relationship with the ferrite. Further aging produced a lamellar structure composed of $Cr_2N$ and austenite along the ferrite/austenite boundary and enhanced the precipitation of the ${\chi}$ phase. The crystallographic features of the precipitates were also examined in terms of the orientation relationship with the austenite or ferrite matrix.

Variation in leaf functional traits of the Korean maple (Acer pseudosieboldianum) along an elevational gradient in a montane forest in Southern Korea

  • Nam, Ki Jung;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.278-284
    • /
    • 2018
  • Plant functional traits have been shown to be useful to understand how and why ecosystems and their components vary across environmental heterogeneity or gradients. This study investigated how plant functional (leaf) traits vary according to an elevation-associated environmental gradient. Environmental gradients (mean annual temperature and precipitation) were quantified, and leaf traits (leaf area, specific leaf area, leaf nitrogen, leaf phosphorus, leaf carbon, and leaf C/N ratio) of the understory woody plant species Acer pseudosieboldianum were examined across an elevational gradient ranging from 600 to 1200 m in a Baegunsan Mountain in Gwangyang-si, Jeollanam-do, South Korea. The results showed that mean annual temperature and precipitation decreased and increased along with elevation, respectively. Leaf area of the plant species decreased slightly with increasing elevation, while specific leaf area did not differ significantly. Leaf nutrients (nitrogen, phosphorus, and carbon concentrations) were higher at high elevations, but leaf C/N ratio decreased with elevation.

Acidity in Precipitation and Solar North-South Asymmetry

  • Moon, Ga-Hee;Ha, Kyoung-Yoon;Kang, Seong-Hoon;Lee, Byoung-Ho;Kim, Ki-Beom;Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.325-333
    • /
    • 2014
  • We are motivated by both the accumulating evidence for the connection of solar variability to the chemistry of nitrogen oxide in the atmosphere and recent finding that the Galactic cosmic-ray (GCR) influx is associated with the solar north-south asymmetry. We have analyzed the measured pH in precipitation over the 109 stations distributed in the United States. We have found that data of pH in precipitation as a whole appear to be marginally anti-correlated with the solar asymmetry. That is, rain seems to become less acidic when the southern hemisphere of the Sun is more active. The acidity of rain is also found to be correlated with the atmospheric temperature, while not to be correlated with solar activity itself. We have carried on the analysis with two subsamples in which stations located in the east and in the west. We find that the pH data derived from the eastern stations which are possibly polluted by sulfur oxides and nitrogen oxides are not correlated with the solar asymmetry, but with the temperature. On the contrary, the pH data obtained from the western stations are found to be marginally anti-correlated with the solar asymmetry. In addition, the pH data obtained from the western stations are found to be correlated with the solar UV radiation. We conclude by briefly pointing out that a role of the solar asymmetry in the process of acidification of rain is to be further examined particularly when the level of pollution by sulfur oxides and nitrogen oxides is low.

Austenite Precipitation Behaviors with Solidification Rate and N Solubility in Cast Duplex Stainless Alloys (주조용 이상스테인리스강에서 응고속도 및 질소고용도에 따른 오스테나이트 석출 거동)

  • Lee, Jong-Yeop;Lee, Je-Hyun;Kim, Sang-Sik;Choi, Byung-Hak;Kim, Sung-Jun;Son, Hee-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.654-659
    • /
    • 2007
  • Austenite precipitation behavior was studied with solidification rates and alloying contents, N and Cr, in duplex stainless steels by directional solidification. Directional solidification experiments were carried out with solidification rates, $1{\sim}100mm/s$, and N and Cr contents, $0{\sim}0.27wt.%,\;25{\sim}28wt.%$ respectively, in a duplex stainless steel, CD4MCU. As the solidification rate increases, the dendrite spacing reduced and the austenite phase in the ferrite matrix became finer. The volume fraction of austenite phase increased and its shape went to be round with increasing nitrogen contents in duplex stainless alloys. The Cr alloying element, even though it is a ferrite former, showed to enhance the nitrogen solubility in the alloy and caused the austenite round and finer. Also, Cr was supposed to decrease the austenite volume fraction, but it increased the austenite slightly due to increasing nitrogen solubility during solidification.

Mulberry Growth Promotion by Nitrogen Application under Abnormally Wet and Cool Weather Conditions (하추기 이상 저온하에서 뽕나무 발육부진요인과 추비에 의한 생육증진)

  • 이원주;윤명근
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.110-114
    • /
    • 1994
  • Abnormally cool and wet weather conditions during the summer of 1993 offered an opportunity to evaluate the effects of abnormal weather conditions on mulberry growth and to develop cultivation practicies to reduce leaf yield loss under the similar abnormal weather conditions. Different methods of nutrient supplementation were evaluated in Suwon and Kongju. Nitrogen was supplemented by foliar spray of urea(1.7%) or composite chemical fertilizer Jamsibiryo #8, or by the application of ammonium sulfate(60kg/ha) to the soil. During the period between the late June and the early September which corresponds to the mulberry growing season after summer pruning, mean temperature was 1.4$^{\circ}C$ lower and precipitation 83mm higher than normal year. This weather condition in 1993 caused reduction in leaf yield by 16.4% than common year. Soil nitrogen content decreased due to higher precipitation. Leaf yield loss was reduced by the supplementation of nitrogen to the soil. Leaf nitrogen content increased with the foliar urea spray and nitrogen supplementation to the soil.

  • PDF