Browse > Article
http://dx.doi.org/10.5140/JASS.2014.31.4.325

Acidity in Precipitation and Solar North-South Asymmetry  

Moon, Ga-Hee (Daegu Science High School)
Ha, Kyoung-Yoon (Daegu Science High School)
Kang, Seong-Hoon (Daegu Science High School)
Lee, Byoung-Ho (Daegu Science High School)
Kim, Ki-Beom (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
Kim, Jung-Hee (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
Publication Information
Journal of Astronomy and Space Sciences / v.31, no.4, 2014 , pp. 325-333 More about this Journal
Abstract
We are motivated by both the accumulating evidence for the connection of solar variability to the chemistry of nitrogen oxide in the atmosphere and recent finding that the Galactic cosmic-ray (GCR) influx is associated with the solar north-south asymmetry. We have analyzed the measured pH in precipitation over the 109 stations distributed in the United States. We have found that data of pH in precipitation as a whole appear to be marginally anti-correlated with the solar asymmetry. That is, rain seems to become less acidic when the southern hemisphere of the Sun is more active. The acidity of rain is also found to be correlated with the atmospheric temperature, while not to be correlated with solar activity itself. We have carried on the analysis with two subsamples in which stations located in the east and in the west. We find that the pH data derived from the eastern stations which are possibly polluted by sulfur oxides and nitrogen oxides are not correlated with the solar asymmetry, but with the temperature. On the contrary, the pH data obtained from the western stations are found to be marginally anti-correlated with the solar asymmetry. In addition, the pH data obtained from the western stations are found to be correlated with the solar UV radiation. We conclude by briefly pointing out that a role of the solar asymmetry in the process of acidification of rain is to be further examined particularly when the level of pollution by sulfur oxides and nitrogen oxides is low.
Keywords
Acid precipitation; solar north-south asymmetry; data analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The Global Temperature Anomaly and Solar North-South Asymmetry, Asia-Pacific J. Atmos. Sci. 48, 253-257 (2012). http://dx.doi.org/10.1007/s13143-012-0025-3   DOI
2 Cotter ESN, Jones AE, Wolff EW, Bauguitte SJB, What controls photochemical NO and NO2 production from Antarctic snow? Laboratory investigation assessing the wavelength and temperature dependence, JGR 108, 4147-4156 (2003). http://dx.doi.org/10.1029/2002JD002602   DOI
3 Crutzen PJ, Isaksen ISA, Reid GC, Solar proton events:stratospheric sources of nitric oxide. Science 189, 457-459 (1975). http://dx.doi.org/10.1126/science.189.4201.457   DOI
4 Aikin AC, Energetic particle-induced enhancements of stratospheric nitric acid, JGR 21, 859-862 (1994). http://dx.doi.org/10.1029/94GL00914   DOI
5 Bazilevskaya GA, Usoskin GI, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic Ray Induced Ion Production in the Atmosphere, SSRv 137, 149-173 (2008). http://dx.doi.org/10.1007/s11214-008-9339-y   DOI
6 Damiani A, Storini M, Rafanelli C, Diego P, The hydroxyl radical as an indicator of SEP fluxes in the high-latitude terrestrial atmosphere, Adv. Space Res. 46, doi:10.1016/j.asr.2010.06.022 (2010). http://dx.doi.org/10.1016/j.asr.2010.06.022   DOI
7 Frey MM, Stewart RW, McConnell JR, Bales RC, Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity, JGR 110, D23301-D23317 (2005). http://dx.doi.org/10.1029/2005JD006110   DOI
8 Friis-Christensen E, Lassen K, Length of the Solar Cycle:An Indicator of Solar Activity Closely Associated with Climate, Science 254, 698-700 (1991). http://dx.doi.org/10.1126/science.254.5032.698   DOI   ScienceOn
9 Funke B, Baumgaertner A, Calisto M, Egorova T, Jackman CH, et al., Composition changes after the "Halloween" solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys. 11, 9089-9139 (2011). http://dx.doi.org/10.5194/acp-11-9089-2011   DOI
10 Garcia RR, Solomon S, Roble RG, Rusch DW, A Numerical Response of the Middle Atmosphere to the 11-year Solar Cycle, P&SS 32, 411-423 (1984). http://dx.doi.org/10.1016/0032-0633(84)90121-1   DOI
11 Garcia RR, Solomon S, A new numerical model of the middle atmosphere. 2. Ozone and related species, JGR 99, 12937-12952 (1994). http://dx.doi.org/10.1029/94JD00725   DOI
12 Haigh JD, The Sun and the Earth's Climate, Living Rev. Solar. Phys. 4 (2007). http://dx.doi.org/10.12942/lrsp-2007-2   DOI
13 Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, SSRv 94, 231-258 (2000). http://dx.doi.org/10.1023/A:1026775408875   DOI   ScienceOn
14 Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, JASTP 66, 1143-1149 (2004). http://dx.doi.org/10.1016/j.jastp.2004.05.006   DOI   ScienceOn
15 Sinnhuber M, Nieder H, Wieters N, Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere, Surveys in Geophys. 33, 1281-1334 (2012). http://dx.doi.org/10.1007/s10712-012-9201-3   DOI
16 Storini M, Damiani A, Effects of the January 2005 GLE/SPE events on minor atmospheric components, Proc. of the international cosmic ray conference, Merida (2007).
17 Traversi R, Usoskin IG, Solanki SK, Becagli S, Frezzotti M, et al., Nitrate in Polar Ice: A New Tracer of Solar Variability, SoPh 280, 237-254 (2012). http://dx.doi.org/10.1007/s11207-012-0060-3   DOI
18 Troshichev O, Solar wind influence on atmospheric processes in winter Antarctica, JASTP 70, 2381-2396 (2008). http://dx.doi.org/10.1016/j.jastp.2008.09.023   DOI   ScienceOn
19 Vitt FM, Armstrong TP, Cravens TE, Dreschhoff GAM, Jackman CH, et al., Computed contributions to odd nitrogen concentrations in the Earth's polar middle atmosphere by energetic charged particles, JASTP 62, 669 (2000). http://dx.doi.org/10.1016/S1364-6826(00)00048-1   DOI
20 Vitt FM, Jackman CH, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a twodimensional model, JGR 101, 6729-6739 (1996). http://dx.doi.org/10.1029/95JD03386   DOI
21 Wilcox JM, Scherrer PH, Svalgaard L, Roberts WO, Olson RH, Solar magnetic sector structure: relation to circulation of the Earth's atmosphere, Science 180, 185-186 (1973). http://dx.doi.org/10.1126/science.180.4082.185   DOI
22 Wisniewski J, Kinsman DJ, An Overview of Acid Rain Monitoring Activities in North America. Bull, Amer. Meteor. Soc. 63, 598-618 (1982). http://dx.doi.org/10.1175/1520-0477(1982)063<0598:AOOARM>2.0.CO;2   DOI
23 Wolff EW, Nitrate in Polar Ice, NATO ASI Series 30, 195-224 (1995). http://dx.doi.org/10.1007/978-3-642-51172-1_10   DOI
24 Zeller EJ, Dreschhoff GAM, Anomalous nitrate concentrations in polar ice cores - do they result from solar particle injections into the polar atmosphere?, GRL 22, 2521-2524 (1995). http://dx.doi.org/10.1029/95GL02560   DOI
25 Zeller EJ, Parker BC, Nitrate ion in Antarctic firn as a marker for solar activity, GRL 8, 895-898 (1981). http://dx.doi.org/10.1029/GL008i008p00895   DOI
26 Heath DF, Schlesinger BM, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance, JGR 91, 8672-8682 (1986). http://dx.doi.org/ 10.1029/JD091iD08p08672   DOI
27 Likens GE, Butler TJ, Recent acidification of precipitation in North America, Atmos. Environ. 15, 1103-1109 (1981). http://dx.doi.org/10.1016/0004-6981(81)90300-0   DOI
28 Jackman CH, DeLand MT, Labow GJ, Fleming EL, Weisenstein D, et al., The influence of the several very large solar proton events in years 2000-2003 on the neutral middle atmosphere, Adv. Space Res. 35, 445-450 (2005). http://dx.doi.org/10.1016/j.asr.2004.09.006   DOI
29 Kim BY, Chang HY, Alternating Sunspot Area and Hilbert Transform Analysis, JASS 28, 261-265 (2011). http://dx.doi.org/10.5140/JASS.2011.28.4.261   DOI
30 Likens GE, et al., Acid rain. SciAm 241, 43-51 (1979). http://dx.doi.org/10.1080/00139157.1972.9933001   DOI
31 Logan JA, Nitrogen oxides in the troposphere : Global and regional budgets, JGR 88, 10785-10807 (1983). http://dx.doi.org/10.1029/JC088iC15p10785   DOI
32 Marsh ND, Svensmark H, Low Cloud Properties Influenced by Cosmic Rays, PhRvL 85, 5004-5007 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.5004   DOI   ScienceOn
33 National Acid Precipitation Assessment Program (NAPAP) Office, NAPAP Report to Congress: An Integrated Assessment. (Washington, DC, 2005).
34 Ney EP, Cosmic Radiation and the Weather, Nature 183, 451-452 (1959). http://dx.doi.org/10.1038/183451a0   DOI
35 Ogurtsov MG, Jungner H, Kocharov GE, Lindholm M, Eronen M, Nitrate Concentration In Greenland Ice: An Indicator Of Changes In Fluxes Of Solar And Galactic High-Energy Particles, SoPh 222, 177-190 (2004). http://dx.doi.org/10.1023/B:SOLA.0000036855.04018.06   DOI
36 Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004). http://dx.doi.org/10.1029/2003GI000060   DOI
37 Parungo F, Nagamoto C, Maddl R, A Study of the Mechanisms of Acid Rain Formation, J. Atmos. Sci. 44, 3162-3174 (1987). http://dx.doi.org/10.1175/1520-0469(1987)044<3162:ASOTMO>2.0.CO;2   DOI
38 Patris N, Delmas R, Legrand M, Angelis MD, Ferron FA, et al., First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods, JGR 107, 4115-4125 (2002). http://dx.doi.org/10.1029/2001JD000672   DOI
39 Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). http://dx.doi.org/10.1016/S0273-1177(97)00767-9   DOI   ScienceOn
40 Reid GC, Solomon S, Garcia RR, Response of the middle atmosphere to the solar proton events of August-December, 1989, GRL 18, 1019-1022 (1991). http://dx.doi.org/10.1029/91GL01049   DOI
41 Boberg F, Lundstedt H, Solar wind variations related to fluctuations of the North Atlantic Oscillation, GRL 29, 13-1-13-4 (2002). http://dx.doi.org/10.1029/2002GL014903   DOI
42 Chang HY, Stochastic properties in north-south asymmetry of sunspot area, NewA 13, 195-201(2008). http://dx.doi.org/10.1016/j.newast.2007.08.007   DOI
43 Cho IH, Kwak YS, Chang HY, Cho KS, Park YD, et al., Dependence of GCRs influx on the solar North-South asymmetry, JASTP 73, 1723-1726 (2011). http://dx.doi.org/10.1016/j.jastp.2011.03.007   DOI   ScienceOn
44 National Acid Precipitation Assessment Program (NAPAP) Office, NAPAP Report to Congress 2011: An Integrated Assessment. (Washington, DC, 2011).