• Title/Summary/Keyword: Precipitation behavior

Search Result 327, Processing Time 0.047 seconds

Mineral Precipitation and the Behavioral Changes of Trace Elements in Munkyeong Coal Mine Drainage (문경 석탄광 배수의 광물 침전 및 미량 원소의 거동 변화)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Ji-Woo;Ju, Ji-Yeon;Hwang, Su-Hyeon;Kim, Yeongkyoo;Park, Changyun;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.355-365
    • /
    • 2022
  • Precipitation and phase transition of iron minerals in mine drainage greatly affect the behavior of trace elements. However, the precipitation of ferrihydrite, one of the major iron minerals precipitated in drainage, and the related behavior of trace elements have hardly been studied. In this study, the effects of pH change and time on mineral precipitation characteristics in mine drainage from the Munkyeong coal mine were investigated, and the behavioral changes of trace elements related to the precipitation of these minerals were studied. In the case of precipitated mineral phases, goethite was observed at pH 4, and 2-line ferrihydrite mixed with small amount of 6-line ferrihydrite was mainly identified at pH 6 or higher. In addition, it was observed that the precipitation of calcite additionally increased as the pH increased in the samples at pH 6 or higher. The occurrence of goethite was probably due to the phase change of initially precipitated ferrihydrite within a short time under the influence of low pH. Our results showed that the concentration of trace elements was strongly influenced by pH and time. With increasing time, Fe concentration in the drainage showed a abrupt decrease due to the precipitation of iron minerals, and the concentration of As existing as oxyanions in the drainage, also decreased rapidly like Fe regardless of the pH values. This decrease in As concentration was mainly due to co-precipitation with ferrihydrite, and also partly to surface adsorption on goethite at low pH in drainage. Contrary to this observation, the concentration of other trace elements, such as Cd, Co, Zn, and Ni was greatly affected by the pH regardless of the mineral species. The lower the pH value, the higher the concentration of these trace elements were observed in the drainage, and vice versa at higher pH. These results indicate that the behavior of trace elements present as cations is more greatly affected by the mineral surface charge influenced by the pH values than the type of the precipitated mineral.

Precipitation behaviors of Cs and Re(/Tc) by NaTPB and TPPCl from a simulated fission products-$(Na_2CO_3-NaHCO_3)-H_2O_2$ solution (모의 FP-$(Na_2CO_3-NaHCO_3)-H_2O_2$ 용액으로부터 NaTPB 및 TPPCl에 의한 Cs 및 Re(/Tc)의 침전 거동)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • In this study, the removal of Cs and Tc from a simulated fission products (FP) solution which were co-dissolved with U during the oxidative-dissolution of spent fuel in a mixed carbonate solution of $(Na_2CO_3-NaHCO_3)-H_2O_2$ was investigated by using a selective precipitation method. As Cs and Tc might cause an unstable behavior due to the high decay heat emission of Cs as well as the fast migration of Tc when disposed of underground, it is one of the important issues to removal them in views of the increase of disposal safety. The precipitation of Cs and Re (as a surrogate for Tc) was examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylphosponium chloride (TPPCl), respectively. Precipitation of Cs by NaTPB and that of Re by TPPCl were completed within 5 minutes. Their precipitation rates were not influenced so much by the temperature and stirring speed even if they were increased by up to $50^{\circ}C$ and 1,000 rpm. However, the pH of the solution was found to have a great influence on the precipitation with NaTPB and TPPCl. Since Mo tends to co-precipitate with Re at a lower pH, especially, it was effective that a selective precipitation of Re by TPPCl was carried out at pH of above 9 without co-precipitation of Mo and Re. Over 99% of Cs was precipitated when the ratio of [NaTPB]/[Cs]>1 and more than 99% of Re, likewise, was precipitated when the ratio of [TPPCl]/[Re]>1.

Bioactivity behavior of biphasic calcium phosphate powders prepared by co-precipitation method (공침법으로 합성된 biphasic calcium phosphate 분말의 생체활성 거동)

  • Kim, Tae-Wan;Kim, Dong-Hyun;Jin, Hyeong-Ho;Lee, Heon-Soo;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The co-precipitation technique has been applied to synthesize biphasic calcium phosphate (BCP). $Ca(NO_3)_2{\cdot}4H_2O$ and $(NH_4)_2HPO_4$ as the starting materials was used. X-ray diffraction (XRD) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the structure of as-synthesized and calcined BCP powders. After immersion in Hanks' Balanced Salt Solution (HBSS), for 1 week a precipitation started to be formed with individual small granules on the specimen surface. An MTT assay indicated that BCP powders have no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

A Study on Water Uptake Behavior and Properties of Pervaporation PVA Membrane (투과증발 PVA 분리막의 물 흡수 거동 및 물성 연구)

  • 김광제;박인준;김동권;이수복
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.74-80
    • /
    • 1995
  • Asymmetric poly(vinyl alcohol) (PVA) membranes were prepared by varying the precipitation conditions of the phase inversion technique, and the influences of precipitation conditions on the water uptake of the membrane were investigate. The degree of water uptake of the membrane increased and reached a certain maximum value, as the precipitation time increased. However, it decreded after that. As the precipition temperauure became lower, the degree of water uptake increased more or less. The addition of a nonionic surfactant to the precipitaon solution was effective reducing the precipitation time by lowering the surface tension of the precipitation solution, but ig didn't change the maximum value of its own degree of water uptake. In addition, the relationship between the degree of water uptake and the separation characteristics and mechanical properies of the membrane were investigated. The selectivity factor of the membrane for pervaperation separation decreased, but the permeate flux increased, respectively, with increasing the degree of water uptake. The tensile strength and elongation of the membrane, respectively, increased to a maximum value with increasing the degree of water uptake, and then decreased abtuptly.

  • PDF

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Effects of Austenitizing Temperature and Cooling Rate on Precipitation Behavior and Tensile Properties of Pressure Vessel Steels (압력용기용 강의 석출거동과 인장특성에 미치는 오스테나이트화 온도 및 냉각속도의 영향)

  • Shin, Jae Woong;Lee, Sang Min;Kim, Yong Jin;Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • The effects of austenitizing temperature and cooling rate on precipitation behavior and tensile properties were investigated in an Mn-Mo-Nb-V pressure vessel steel. During austenitizing, it was shown that the austenite coarsening was somewhat suppressed by undissolved NbC. After cooling from austenitizing, the microstructure of all the steels mainly consisted of upper bainite. However, the steel comprised a little lower bainite and martensite in the case of aqua oil quenching from $1000^{\circ}C$, which would be due to increased hardenability by partly dissolved Nb and comparatively large austenite grains. The average size of NbC in austenite at higher temperature was analyzed to be smaller than that at lower temperature because of the more dissolution. It was found that the NbC did not grow much during fast cooling from austenitizing. Meanwhile, the NbC grew much during slow cooling, probably due to wide temperature range of cooling and sufficiently long time for NbC to grow. It was conjectured the V precipitates newly formed and/or grew during cooling from austenitizing and during tempering. On the other hand, the formation of NbC was almost completed before tempering and little more precipitated during tempering. Among the tempered steels, the steel which was fast cooled from $1000^{\circ}C$ showed the highest tensile strength, which seemed to come from the microstructure of fine upper bainite and some low temperature phases as well as the comparatively fine NbC precipitates.