• 제목/요약/키워드: Precipitation Separation

검색결과 179건 처리시간 0.023초

pH와 완속교반 조건에 따른 중금속 수산화물 화학침전 특성 (Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation)

  • 박종훈;최규진;김상현
    • 유기물자원화
    • /
    • 제22권2호
    • /
    • pp.50-56
    • /
    • 2014
  • 일반적으로 도금 폐수를 비롯한 산업 폐수 내 중금속 처리에 적용되는 응집-침전은 응집제의 비용과 침전 효율의 불안정성이라는 한계가 존재한다. 본 연구에서는 수산화물 생성-분리막 공정을 전제로 하여, pH와 교반조건에 따른 수용액 상의 중금속 제거 효율과 생성된 수산화물의 입도 분포를 고찰하였다. pH별 실험 결과, pH 9-10에서 최적의 중금속 제거 효율이 확인되었으며, 무기응집제인 $FeCl_3$의 투입은 오히려 제거 효율을 저하시켰다. 완속교반 시간 및 강도는 70 rpm, 20 min 조건이 최대 효율을 보였으며 Cu, Ni, Zn 모두 청정 지역 기준 폐수 배출 기준을 만족하였다. 나타났다. 생성된 중금속 수산화물의 입도 분석을 수행한 결과, 입자의 99.9 %가 $2{\mu}m$ 이상이었다.

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • 한국분말재료학회지
    • /
    • 제20권3호
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

동적 상분리법을 이용한 이방성 도토리형상 입자 제조 (Anisotropic Acorn-like Particle Fabrication Via a Dynamic Phase Separation Method)

  • 박철호;백일현
    • 멤브레인
    • /
    • 제29권1호
    • /
    • pp.61-65
    • /
    • 2019
  • 이방성 입자는 독특한 물리적 특성 때문에 다양한 분야에서 발표되고 있다. 여기서, 이방성 도토리구조 나노 입자를 제조하기 위해 새로운 동적 상분리 방법이 도입된다. 동적 상분리 방법은 용제 증발 및 무용제에 의한 침전으로 구성된다. 하부층은 비용매 희석제로서 물을 공급함으로써 제어되며, 상부층의 상분리는 휘발성 용매의 확산 및 증발에 의존한다. 이 상태에서, 도토리 형 입자가 제조되었다. 물이 채워진 밀폐된 상자(자발적 상분리)하에서, 단분산 폴리스틸렌 입자가 합성되었다. 동적 상분리와 자발적 상분리가 공존할 때, 캡과 입자의 크기가 변경되었다. 또한, 폴리스틸렌 용액의 부피는 입자 형상에 영향을 미친다. 독특한 구조가 다양한 응용 분야에 활용될 수 있기 때문에 멤브레인 기반의 제어된 물 공급과 같은 첨단 기술이 개발되면 단분산의 도토리와 같은 입자가 제조될 수 있을 것이다.

Determination of Boron Steel by Isotope-Dilution Inductively Coupled Plasma Mass Spectrometry after Matrix Separation

  • Park, Chang-J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1541-1544
    • /
    • 2002
  • The concentration of B in steels is important due to its influence on mechanical properties of steel such as hardenability, hot workability, and creep resistance. An analytical method has been developed to determine B in steel samples by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). National Institute of Standard and Technology Standard Reference Material (NIST SRM) 348a was analyzed to validate the analytical method. The steel sample was digested in a centrifuge bottle with addition of aqua regia and $^{10}B$ spike isotope. Sample pH was then adjusted to higher than 10 to precipitate most matrix elements such as Fe, Cr, and Ni. After centrifugation, the supernatant solution was passed through a cation exchange column to enhance the matrix separation efficiency. B recovery efficiency was about 37%, while matrix removal efficiency was higher than 99.9% for major matrix elements. The isotope dilution method was used for quantification and the determined B concentration was in good agreement with the certified value.

주석 함유 폐자원의 공정부산물 전처리 기술 (Development of Pre-treatment for Tin Recovery from Waste Resources)

  • 진연호;장대환;정항철;이기웅
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.142-146
    • /
    • 2014
  • Fundamental experiences have been studied for development of pre-treatment process of Sn by-products such as solders. Dry and wet separation/recovery processes were considered by the differences of physical properties. The by-products, which are analyzed by solder metal and oxides. The metal and oxide were simply separated by dry ball-milling process for 12 hours, after that recovery metal powder might be reusable as lead or lead-free solders. In terms of wet separation process, samples were dissolved in $HNO_3+H_2O_2$ and the precipitation were analyzed by $SnO_2$. Overall efficiency of recovery might be increasing via developing simple pre-treatment process.

사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물) (Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water)

  • 백기전;김제영;이환광;김성철
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

Release of Cu from SDS micellar solution using complexing agents

  • 김호정;백기태;김보경;이율리아;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.307-310
    • /
    • 2004
  • Micellar enhanced ultrafiltration (MEUF) is a surfactant-based separation process and it can remove heavy metal ions from aqueous stream effectively. However, it is necessary to recover and reuse surfactants for economic feasibility because surfactant is expensive. Foam fractionation was investigated for both anionic and cationic surfactant recovery. Chelating agent such as ethylenediaminetetraacetic acid (EDTA) was studied for the separation of heavy metals from surfactant solution. Anionic surfactants bound with heavy metals can be recovered by lowering pH (acidification). In this study, citric acid and imminodiacetic acid (IDA) were applied to release copper from sodium dodecyl sulfate (SDS) micellar solution and compared with EDTA. Precipitation of copper by ferricynide and sodium sulfide were also investigated. As a result, ca. 100 % of copper was released from SDS micellar solution by 5 mM of EDTA and citric acid. And 3.3 mM of ferricyanide formed precipitate with 82.7 % of copper. 5 mM of IDA and sodium sulfide released or formed precipitate 82.5 % and 58.9 % of copper, respectively. Citric acid is harmless to environments and ferricyanide precipitates with Cu easily. Therefore, it is considered that citric acid and ferricyanide have competiveness over a famous chelating agent, EDTA, for the separation of Cu from SDS solution.

  • PDF

Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins

  • Goyder, Miriam S.;Willison, Keith R.;Klug, David R.;DeMello, Andrew J.;Ces, Oscar
    • BMB Reports
    • /
    • 제45권4호
    • /
    • pp.233-238
    • /
    • 2012
  • We present a top down separation platform for yeast ribosomal proteins using affinity chromatography and capillary electrophoresis which is designed to allow deposition of proteins onto a substrate. FLAG tagged ribosomes were affinity purified, and rRNA acid precipitation was performed on the ribosomes followed by capillary electrophoresis to separate the ribosomal proteins. Over 26 peaks were detected with excellent reproducibility (<0.5% RSD migration time). This is the first reported separation of eukaryotic ribosomal proteins using capillary electrophoresis. The two stages in this workflow, affinity chromatography and capillary electrophoresis, share the advantages that they are fast, flexible and have small sample requirements in comparison to more commonly used techniques. This method is a remarkably quick route from cell to separation that has the potential to be coupled to high throughput readout platforms for studies of the ribosomal proteome.

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

Removal Characteristics of cobalt by Complexation with Humic Substances

  • 양지원;김호정;백기태;김보경
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.128-131
    • /
    • 2003
  • It is well known that the membrane separation process combined with surfactant micelle (micellar-enhanced ultrafiltration) or polyelectrolyte (polyelectrolyte-enhanced ultrafiltration) can remove heavy metals effectively. However, the environmental hazard of surfactant or polyelectrolyte remained in effluent is a serious disadvantage of these methods. In this study, humic substances (HS) were used as complexing agents for metal removal instead of synthetic chemicals. The HS are a sort of natural organic matters which are biodegradable and abundant in natural environment. And the functional groups such as carboxyl groups and phenols in HS can bind with the cationic radionuclides and form complexes. Therefore separation process using them will be more environmental-friendly. The effects of concentration of HS and pH on the removal of cobalt were investigated. The ultrafiltration process was applied to the separation of the cobalt - HS complexes from the aqueous stream. At the concentration of > 3 g/L of HS and pH of 6, over 95 % of cobalt was removed by regenerated cellulose membrane of molecular weight cut-off (MWCO) 3,000. As the concentration of HS increased, the removal of cobalt also was improved because of increase in biding sites (functional groups). The cobalt removal increased from 72.5 % to 97.5 % when pH increased from 4 to 8 at the concentration of 3 g/L HS because of increase in HS solubility and cobalt hydroxide precipitation. In the presence of NaCl, the removal efficiency of cobalt decreased.

  • PDF