• Title/Summary/Keyword: Precipitates($\gamma$`

Search Result 50, Processing Time 0.029 seconds

A Study on the Precipitation Behavior of Disordered ${\gamma}$ Phase in an $L1_2$ Ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ Phase ($L1_2$${\gamma}^{\prime}-Ni_3(Al,Ti)$ 규칙상 중에 불규칙 ${\gamma}$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.249-256
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening found in $L1_2$ ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ alloys using transmission electron microscopy. A uniform solid solution of ${\gamma}^{\prime}-L1_2$ ordered phase supersaturated with Ni can be obtained by solution annealing in a suitable temperature range. The ${\gamma}^{\prime}$ phase hardens appreciably by the fine precipitation of disordered ${\gamma}$. The shape of ${\gamma}$ precipitates formed during aging is initially spherical or round-cubic and grow into platelets as aging proceeds. High resolution electron microscopy revealed that the ${\gamma}$ precipitates are perfectly coherent with the matrix ${\gamma}^{\prime}$ as long as the ${\gamma}$-precipitates are plates. The loss of coherency initiates by the introduction of dislocations at the ${\gamma}/{\gamma}^{\prime}$ interface followed by the step formation at the dislocations. The ${\gamma}$ precipitates become globular after the loss of coherency. The strength of ${\gamma}^{\prime}-Ni_3(Al,Ti)$ increases over the temperature range of experiment by the precipitation of fine ${\gamma}$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature.

Determination of Lattice Parameters and Observation of Lattice Misfits on Rene 80 Cast Blades (Rene 80 주조블레이드에서 격자상수의 결정 및 격자어긋남의 관찰)

  • An, Seong-Uk
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.515-520
    • /
    • 1993
  • By the real use of Rene 80 cast blades at high temperature ${\gamma}^{\prime}$ precipitates in the matrix(${\gamma}$) mainly due to the operating temperature. These precipitates play main role for strenthening of the blades. Generally known that dislocation density increases due to ${\gamma}-{\gamma}^{\prime}$ mismatch by the generation and growth of the precipitates, because the lattice parameter of ${\gamma}^{\prime}$ is higher than that of ${\gamma}$. These lattice parameters of ${\gamma}$ and ${\gamma}^{\prime}$ are determined through the CBED(Convergent Beam Electron Diffraction) method by STEM(Scanning Transmission Electron Microscope) in this work. And also studied, whether and how much the dislocation density increases by the generation and growth of the precipitates.

  • PDF

Microstructures and Mechanical Properties of Age Hardenable Cu-2.0wt%Be Alloy for Projection Welding Electrode (프로젝션 용접 전극을 위한 시효경화성 Cu-2.0wt%Be 합금의 미세조직과 기계적성질)

  • Kim, Gwangsoo;Kim, Jinyong
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.468-474
    • /
    • 2015
  • Evaluations of the microstructure and mechanical properties of age hardenable Cu-2.0wt%Be alloy are performed in order to determine whether it can be used as a welding electrode for projection welding. The microstructure examinations, hardness measurements, and tensile tests of selective aging conditions are conducted. The results indicate that the aging treatment with the fine-grained microstructure exhibits better hardness and high tensile properties than those of the coarse-grained microstructure. The highest hardness value and high tensile strength are obtained from the aged condition of $300^{\circ}C$ for 360 min due to the presence of the metastable ${\dot{\gamma}}$ precipitates on the grain boundaries. The values of the highest hardness and tensile strength are measured as 374 Hv and 1236.2 MPa, respectively. The metastable ${\dot{\gamma}}$ precipitates are transferred to the equilibrium ${\gamma}$ precipitates due to the over-aged treatment. The presence of the ${\gamma}$ precipitates appears as nodule-like precipitates decorated around the grain boundaries. The welding electrode with the best aging treated condition exhibits better welding performance for electrodes than those of electrodes used previously.

A Study on the Strength Characteristics of $L1_{2}-Ni_{3}Al$ Intermetallic Compound ($L1_{2}-Ni_{3}Al$ 금속간화합물의 강도특성에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2009
  • Structural studies have been performed on precipitation hardening found in $Ni_{3}Al$ based ordered alloys using transmission electron microscopy (TEM). Tilt experiments by the weak-beam method were made to obtain some information concerning the cross slip mechanism of the superlattice dislocation. The strength of ${\gamma}'-Ni_3$(Al,Ti) increases over the temperature range of experiment by the precipitation of fine $\gamma$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Over the whole temperature range, the interaction between dislocation and $\gamma$ precipitates is attractive. On the temperature range of 773 K to 973 K, the dislocations in ${\gamma}'$ matrix move on (111) primary slip plane. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in $\gamma$ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in ${\gamma}'-Ni_3$(Al,Ti) containing $\gamma$ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered $\gamma$ particles.

Strengthening Mechanism of the Ni3Al-based Alloy (Ni3Al계 합금의 강화기구)

  • Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Strengthening mechanisms in an ordered intermetallic compound containing coherent precipitates of lower antiphase boundary energy than the matrix were investigated on the basis of the interaction between the deformation induced dislocations and the disordered precipitates in an $Ll_2$ ordered $Ni_3Al$-based alloy. Extra work was needed to pull out the dislocations from the precipitate, which was dependent on the difference in the antiphase boundary energy between the matrix and the precipitate, as well as the size and volume fraction of the precipitate. The strength of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase containing fine precipitates of the disordered ${\gamma}$ phase was examined using the proposed model. The model can explain almost quantitatively the age hardening behavior of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase.

Effect of Precipitates on the High Temperature Tensile Properties of Cast Alloy 718 (주조용 718합금의 고온 인장 성질에 미치는 석출물의 영향)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Ryu, Yeong-Su;Kim, In-Su;Jo, Hae-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.515-521
    • /
    • 2000
  • The effect of precipitates on the high temperature tensile properties of cast alloy 718 was investigated by phase extraction method and microstructural observation. The value of tensile strength and elongation gradually decreased with increasing testing temperature up to $760^{\circ}C$. Elongation of the alloy increased, while tensile strength decreased above 76$0^{\circ}C$. The amount of precipitates in the specimen that tensile tested at $760^{\circ}C$ showed maximum owing to stress assisted precipitation. Therefore, the alloy exhibited the lowest value of the elongation and the degree of decrease in yield strength at this temperature due to high flow stress of precipitates. Little amount of precipitate, especially $\gamma$' and $\gamma$", resulted in softening of the alloy at the temperature above $760^{\circ}C$.

  • PDF

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(II) -Microstructural Change of Base Metal during Bonding Process - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(II) -접합공정에서 모재조직의 변화-)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GTD-111 was investigated. Bonds were fabricated using a series of holding times(0-7.2ks) at three different temperatures(1403, 1418 and 1453K) under a vacuum of 13.3mPa. In raw material, ${\gamma}$- ${\gamma}$' eutectic phases, platelet η phases, MC carbide and PFZ were seen in interdendritic regions or near grain boundary and size of primary ${\gamma}$' precipitates near interdendritic regions were bigger than core region. The primary ${\gamma}$' precipitates in dendrite core were dissolved early in bonding process, but ${\gamma}$' precipitates near interdendritic regions were dissolved partially and shape changed. The dissolution rate increased with increasing temperature. Phases in interdendritic regions or near pain boundary continually changed with time at the bonding temperature. In the bonding temperature of 1403K, eutectic phases had not significantly changed, but η phases had transformed from platelet shape to needle morphology and PFZ region had widened with time. The interdendritic region and near pain boundary were liquated partially at 1423k and fully at 1453k by reaction of η phases and PFZ. In the bonding temperature of 1453K, interdendritic region and near pain boundary were liquated and then new phases which mixed with η phases, PFZ and MC carbide crystallized during cooling. Crystallized η phases transformed from rod shape to platelet shape with increasing holding time.

Effect of Heat Treatment on the Microstuctures and Mechanical Properties of TiC Dispersed Ni-base Alloy (TiC 분산된 니켈기 합금의 미세조직 및 기계적 특성에 미치는 열처리 영향)

  • Hong, Seong-Hyeon;Hwang, Keum-Chul;Rhee, Won-Hyuk;Chin, Eog-Yong
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2002
  • The microstructures and properties of TiC dispersed nickel-base alloy were studied in this work. The alloy prepared by powder metallurgical processing was solution treated, 1st-aged at $880^{\circ}C$ for 16 hours, and then 2nd-aged at $760^{\circ}C$ for 4 hours. Microstucture of sintered specimen showed that TiC particles are uniformly dispersed in Ni base alloy. In the specimen aged at $880^{\circ}C$ for 8 hours, the fine $\gammaNi_3$(Al,Ti) precipitates with round shape are observed and the very fine $\gammaNi_3$(Al,Ti) particles with round shape are precipitated in the specimen aged at $760^{\circ}C$ for 4 hours. The presence of ${\gamma}$precipitates in TiC/Ni base alloy increased the hardness and wear resistance of the specimen. The hardness and wear resistance of the Ni-base with TiC are higher than those of conventional Ni-base superalloy X-750 because of dispersion strengthening of TiC particles. The hardness, transverse rupture strength and resistance of the specimen 2nd-aged at $760^{\circ}C$ for 4 hours are higher than those of 1st-aged specimen due to ultrafine $\gammaNi_3$(Al,Ti) precipitates.

Aging of Melt Spun Ribbons in Cu-Based Shape Memory Alloys at High Temperature (Melt Spinning된 Cu-Al-Ni-X계 형상기억합금 리본의 고온시효)

  • 최영택
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.208-215
    • /
    • 1995
  • The aging effects on the characteristics of the melt spun Cu based shape memory alloys have been investigated by the microhardness test, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. After aged for specific times, hardness of the ribbons began to increase and shape memory capacity diminished. At the initial stage of aging the austenitic transformation temperatures increased gradually, but at last became nearly constant: That is, the aging deteriorated the thermal stability. The increase in hardness was due to the formation of the $\gamma_2$ precipitates. The loss in the shape memory capacity was due to the decrement of solute atoms in the matrix by the formation of the $\gamma_2$ precipitates. In this study, it was confirmed that Mn is an effective element for Improving the thermal stability.

  • PDF