• Title/Summary/Keyword: Precipitated calcium carbonate

Search Result 93, Processing Time 0.035 seconds

A Study on Soil Cementation and Calcite Precipitation with Clay as a Medium (점토를 매개체로 한 탄산칼슘 석출 및 흙의 고결에 관한 연구)

  • Park, Sung-Sik;Suh, Eun-Hee;Chae, Kyung-Hyeon;Jang, Sang Kyu;Kim, Jin-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.17-27
    • /
    • 2015
  • In this study, we tried to precipitate calcium carbonate with carbonate ions decomposed from urea by plant extract and calcium ions dissolved in water. The clay particles carry a net negative charge on their surfaces. Such clay mineral was additionally mixed as a medium to improve soil strength and durability with environmentally-friendly way. The $1^{st}$ solution (plant extracts and urea) and the $2^{nd}$ solution (calcium chloride and clay) were mixed together with clean Nakdong River sand. Then, this mixed soil was compacted into a small cylindrical specimen and then air cured for 7 days in laboratory. The molar concentration of urea and calcium chloride was tested for three different conditions, 1, 5, and 7 mol. Three different clay contents (0, 1, and 3% per total weight) were mixed with sand. For each specimen, a series of unconfined compression test, a durability test, SEM, EDX and XRD analyses were carried out to evaluate its cementation and structure. As the molar concentration of the solution and clay content increased, the unconfined compressive strength and durability increased. The results of SEM, EDX and XRD analyses showed that calcite was precipitated around clay mineral. The thermogravimetry analysis indicated that calcium carbonate precipitated about 1~2% per total weight of the sample.

Study on preparation of precipitated calcium carbonate using recycling water of ready-mixed Concrete (레미콘 회수수를 이용한 침강성 탄산칼슘 제조에 관한 연구)

  • Shin, Jae Ran;Kim, Jae Gang;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.232-238
    • /
    • 2016
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. Also a shuttle mechanism of wet chemical absorption using MEA was utilized. The high concentration $CO_2$(A) and exhaust gas(B) was used for collecting carbon dioxide in the 30% MEA aqueous solution, and $CO_2$ was fixed with rate of 0.35 mg of $CO_2$ per mg of sludge through the liquid carbonation process. It was found from SEM data that calcium carbonate was mainly made up with spherical vaerite with the mixing of a small quantity of calcite.

A Study on Characteristics of Precipitated Calcium Carbonate Prepared by the Nozzle Spouting Method (분사법으로 제조된 침강성 탄산칼슘 특성에 관한 연구)

  • Park, Joo-Won;Kim, Joon-Seok;Ahn, Ji-Whan;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Precipitated calcium carbonate (PCC) was prepared in a cylindrical reactor by the nozzle spouting method. The reactor was filled with $CO_2$ and $Ca(OH)_2$ suspensions were circulated through a nozzle to prepare PCC. This method has several advantages such as provision of large contact area between suspension and $CO_2$ and production of large number of nuclei in short time. By changing suspension concentrations, suspension temperature, flow rates of $CO_2$ and nozzle sizes, PCC from homogeneously dispersed $0.1{\mu}m$ to heterogeneous $0.3{\mu}m$ can be obtained. According to XRD analyses, most PCC formed was calcite with small amount of aragonite depending on the reaction conditions. Usually, the reaction proceeded at high pH and electric conductivities initially. Then, pH and electric conductivities decreased rapidly to the saturation condition. Results indicated that the specific conditions (temperature: $25^{\circ}C$, suspension concentration: 0.5 wt%, $CO_2$ flow rate: 1 L/min, nozzle size: 0.4 mm) were required to prepare uniform particle size (particle diameter: $0.1{\mu}m$) of PCC.

Phase change of calcium carbonate crystals by adding additives (첨가제 첨가에 의한 탄산칼슘 결정의 상변화)

  • Han, Hyun-Kak;Kwon, Chil-Sun;Jeon, Je-Sung;Choi, Im-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4069-4074
    • /
    • 2010
  • Phase change of calcium carbontae crystals in crystallization of precipitated calcium carbonate was researched by adding additives such as ethylenediaminetetraacetic acid(EDTA), diethylenetriaminepentaacetic acid(DTPA), citric acid(CIT) and pyromellitic amid(PMA). At low temperature $20^{\circ}C$, calcite crystal was made. At high temperature $80^{\circ}C$, aragonite crystal was made without additives. At middle temperature $40^{\circ}C$ and $60^{\circ}C$, Aragonite crystal also made by adding EDTA, DTPA. The crystal growth of Aragonite was retarded by the presence of CIT, PMA and the single phase of calcite was made. It was found that additives were important factors to make the single phase of calcium carbonate.

Trends in papermaking minerals used in the Asia-Pacific region

  • Lines, M.G.;Park, S.B.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.56-65
    • /
    • 2004
  • The Asia Pacific papermaking giants are China, Japan and Korea followed by Indonesia. The strong trends in recent years have been the move to alkaline/neutral sizing which has assisted the move from kaolin and talc as the major filler minerals to ground calcium carbonate and precipitated calcium carbonate. Kaolin remains important as a constituent in many coating formulations and Chinese-sourced talc, due to its brightness and price will remain important especially in paper filler minerals. The need for ever increasing printing surface quality and continuing efforts by the paper manufacturers to keep costs under control will ensure minerals in papermaking will continue to be a dynamic subject in the years ahead.

  • PDF

Development of Paper Coating Technologies to Prevent Print Mottle (II)-Optical Properties of Coated Papers Affected by Coating Pigment Composition and Coat Weight (인쇄 모틀의 방지를 위한 제지도공 기술개발 (제2보)-도공안료 조성과 도공량에 따른 도공지의 광학적 특성 변화)

  • 정준경;신동소;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • A study was carried out to investigate such optical properties of coated papers as brightness, opacity and gloss affected by the coating pigment composition and coat weight using clay, ground calcium carbonate, precipitated calcium carbonate, and plastic pigment as pigments. The effects of drying methods and supercalendering on optical properties were also evaluated. Gloss increased abruptly while brightness and opacity decreased slightly by supercalendering due to surface smoothing and consolidating effects of the coating layers. Optical properties changed little by drying methods. Pigment composition showed significant influences on optical properties. Brightness of coated papers decreased or increased linearly as the coat weight was increased depending on the pigment composition, while opacity increased linearly for all formulations. Gloss increased abruptly at low coat weights for all formulations and approached a plateau value at coat weight of 15-20g/$m^2$. Third order polynomial regression equations relating the coat weight with gloss have been derived and tabulated.

  • PDF

Morphological Analysis of Engineered PCC by Gas-Liquid Mixing Conditions (기체-액체 혼합조건에 따른 Engineered PCC의 형태학적 분석)

  • Lee, Tai-Ju;Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.113-120
    • /
    • 2011
  • Precipitated calcium carbonate(PCC), particularly calcite crystal, is extensively used as a pigment, filler or extender in various industries such as paper, paint, textile, detergents, adhesives, rubber and plastics, food, cosmetics, and biomaterials. PCC is conventionally produced through the gas-liquid carbonation process, which consists on bubbling gaseous $CO_2$ through a concentrated calcium hydroxide slurry. This study is aimed to find some factors for controlling the morphology of engineered PCC in lab-scaled mixing batch. The experimental designs were based on temperature variables, $Ca(OH)_2$ concentration, $CO_2$ flow rate, and electrical conductivity. The model of engineered PCC morphology was finally controlled by adjustment of electrical conductivity(6.0~7.0 mS/cm) and $Ca(OH)_2$ concentration(10 g/L). Orthorhombic calcite crystals were mostly created at high concentration and electrical conductivity conditions because the increased ratio of $Ca^{2+}$ and $CO{_3}^{2-}$ ions affects the growth rate of orthorhombic faces. Excess calcium spices were contributed to the growth of faces in calcium carbonate crystal, and the non-stoichiometric reaction was occurred between $Ca^{2+}$ and $CO{_3}^{2-}$ ions during carbonation process.

Sizing Efficiency of AKD in Causticizing Calcium Carbonate Filled Paper

  • Wang, Jian;Liu, Ling;Xu, Yong-Jian
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Causticizing calcium carbonate (CCC) is produced as a by-product in the causticization step of the kraft pulping process. It is often calcined in a rotary lime kiln after being dewatered and reused in the causticizing process. But for the China mill, the conventional recycled way is difficult because the CCC is mainly obtained from non-wood pulping materials, which higher silicon content led to serious silicon obstacle. So it is often discarded as solid waste or used in landfill after dewatering and secondary pollution is brought. In order to prevent its secondary pollution, recent years, the CCC is used as a filler in China papermaking industry. In mill trials, the CCC can be used to replace an amount of precipitated calcium carbonate (PCC). Unfortunately, the application scope and dosage of CCC have been limited due to its lower sizing efficiency than PCC. In this study, the reason for the lower sizing efficiency of alkyl ketene dimer (AKD) when CCC was used as a filler was investigated. The results showed that the materials in green liquid, such as insoluble matter in green liquid, silicon and metal ions, were a little influence on the sizing efficiency of AKD. The higher BET and BJH pore volume of the CCC were the main reason for lower sizing efficiency of AKD when it was used as filler.

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Development of Recycled Paper Properties using In-Situ Process (In-Situ 공정(工程)을 이용한 재활용(再活用) 펄프의 물성특성(物性特性) 향상 연구(硏究))

  • Lee, Jong-Kyu;Yoo, Kwang-Suk;Nam, Seong-Yong;Ah, Ji-Whan
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.62-70
    • /
    • 2010
  • As the demand for paper continues to grow and the importance of recycled paper, white ledgar(WL) and old newspaper pulp(ONP), continuously increase. In addition, usage of recycled paper is essential in terms of forest conservation and environmental protection issues. However, optical and mechanical properties of recycled paper have some drawbacks than regular paper's properties that is indispensable. In order to complement these problems of recycled paper, precipitated calcium carbonate (PCC) was synthesized by the In-situ process with a recycled pulp. Depending on the size of PCC is divided into 2 types, $0.01{\mu}m{\sim}0.09{\mu}m$ colloid type ultra-fine particle and $0.1{\mu}m{\sim}0.9{\mu}m$ cubic type particles. In this study, we analyze how the different shape and size of precipitated calcium carbonate affects in the optical and mechanical properties of the recycled paper used as a filler. Furthermore, we mixed with chemical pulp for overcome reduce of mechanical properties, without using other chemicals, when we use PCC as a filler. The results has the possibility to meet in GR excellent recycling certification mark, standard was proposed.