• Title/Summary/Keyword: Precipitable water vapor

Search Result 75, Processing Time 0.029 seconds

Development of Algerian Weighted Mean Temperature Model for High Accurate Precipitable Water Vapor (고정확도 가강수량 획득을 위한 알제리 가중평균기온 모델 개발)

  • Sim, SeungHye;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • The water vapor including latent heat is the important component in an atmospheric circulation and in a monitoring of the Earth's climate changes, as well as in the weather forecast improvement. In this study, to establish the Algerian weighted mean temperature model, a linear regression method had been developed under 5 radiosonde observations for a total 24,694 profiles from 2004 to 2013. An weighted mean temperature is a key parameter in the processing of PWV from GNSS tropospheric delays. The result from the study has expected to provide an useful model to demonstrate the realization and utility of using the ground-based GNSS meteorology technique that will bring improvements in weather forecasting, climate monitoring in Algeria.

Analysis on Characteristics of Radiosonde Sensors Bias Using Precipitable Water Vapor from Sokcho Global Navigation Satellite System Observatory (속초 GNSS 가강수량을 이용한 라디오존데 센서별 편향 분석)

  • Park, Chang-Geun;Cho, Jungho;Shim, Jae-Kwan;Choi, Byoung-Choel
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.263-274
    • /
    • 2016
  • In this study, we compared the Precipitable Water Vapor (PWV) data derived from the radiosonde observation at Sokcho observatory and the PWV data at Sokcho Global Navigation Satellite System (GNSS) observatory provided by Korea Astronomy and Space Science Institute, for the summer of 2007~2014, and analyzed the radiosonde diurnal and rainfall-dependent bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and GNSS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study and dry bias of RSG-20A sensor was larger than other sensors. Overall, the tendency that the wet bias of the radiosonde PWV increased as GNSS PWV decreased and the dry bias of the radiosonde PWV increased as GNSS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2007, 2008 summer. In comparison for summer according to the presence or absence of rainfall, RS92-SGP sensor showed the highest quality.

Comparison of Local Mean Temperature Equations for GPS-based Precipitable Water Vapor Determination (GPS 가강수량 결정을 위한 한국형 평균온도식 비교)

  • Ha, Ji-Hyun;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • The mean temperature equation is a key factor in calculating GPS meteorological information. A local mean temperature equation should be used to improve accuracy of GPS PWV (Precipitable Water Vapor). In this paper, four local mean temperature equations, HP, $HP_M,\;HPt_Y,\;and\;HPt_M$ from Ha & Park (2008) were used to analyze the effects of local models in determining GPS PWV. Four different sets of GPS PWVs were compared with radiosonde PWV to validate the accuracies of local models. GPS PWVs of four local models have similar trends compared against radiosonde PWV. The bias and RMS error were the same level: the bias is ${\sim}3mm$ and the RMS is ${\sim}3.6mm$ after the bias was removed. Especially, with $HPt_Y\;and\;HPt_M$ models one can obtain accurate PWVs even without surface temperature measurements. And we investigated dry bias of radiosonde measurements depending on sensor types and observation time at Sokcho weather station. After the radiosonde sensor equipment was changed from RS80-15L to GRS DFM-06, dry bias of radiosonde PWV decreased about 18.2% during daytime (KST 09:00), and 16.1% during nighttime (KST 21:00).

Comparison of Precipitable Water Vapor Observations by GPS, Radiosonde and NWP Simulation (GPS와 라디오존데 관측 및 수치예보 결과의 가강수량 비교)

  • Park, Chang-Geun;Baek, Jeong-Ho;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.555-566
    • /
    • 2009
  • Precipitable water vapor (PWV) derived from a numerical weather prediction (NWP) model were compared to observations derived from ground-based Global Positioning System (GPS) receivers. The model data compared were from the Weather Research and Forecasting (WRF) model short-range forecasts on nested grids. The numerical experimets were performed by selecting the cloud microphysics schemes and for the comparisons, the Changma period of 2008 was selected. The observational data were derived from GPS measurements at 9-sites in South Korea over a 1-month period, in the middle of June-July 2008. In general, the WRF model demonstrated considerable skill in reproducing the temporal and spatial evolution of the PWV as depicted by the GPS estimations. The correlation between forecasts and GPS estimates of PWV depreciated slowly with increasing forecast times. Comparing simulations with a resolution of 18 km and 6 km showed no obvious PWV dependence on resolution. Besides, GPS and the model PWV data were found to be in quite good agreement with data derived from radiosondes. These results indicated that the GPS-derived PWV data, with high temporal and spatial resolution, are very useful for meteorological applications.

The Characteristic Analysis of Precipitable Water Vapor According to GPS Observation Baseline Determination (GPS 관측소 기선 처리에 따른 가강수량 특성 분석)

  • Lim, Yun-Kyu;Han, Sang-Ok;Jung, Sueng-Pil;Seong, Ji-Hye
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.626-632
    • /
    • 2013
  • In this study the GPS Precipitable Water Vapor (PWV) was derived and evaluated by a radiosode measure during the winter intensive observation in Gangneung site from January 5 till February 29 in 2012. Bernise 5.0 software was used to derive the GPS data. GPS-derived PWV from Zero difference (GANG) and Single difference (GANG and DAEJ) was high variance in time and about 5 times the PWV of radiosonde. GPS post-processing has been performed from two additional IGS site (Xian Dao, Ibaraki-ken) in order to correct the absolute troposphere errors. As a result, the mean bias error (MBE) and root mean square error (RMSE) and correlation compared with radiosonde measure were 0.67 mm, 6.40 mm, and 0.93, respectively. In order to correct the relative troposphere errors from the altitudinal difference between the two GPS receivers, we calculated the GPS-derived PWV by adding the data of GPS that was installed in Gangneung-Wonju University near the Gangwon Regional Meteorological Administration. In the end, the improved result showed that MBE, RMSE and correlation in comparison with radiosonde measures were 0.61 mm, 5.79 mm, and 0.93, respectively.

Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models (GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석)

  • Nam, JinYong;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.233-242
    • /
    • 2019
  • ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

GPS water vapor estimation modeling with high accuracy by consideration of seasonal characteristics on Korea (한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.565-574
    • /
    • 2009
  • The water vapor weighted vertically mean temperature(Tm) models, which were developed by the consideration of seasonal characteristics over the Korea, was used in the retrieval of precipitable water vapor (PWV) from GPS data which were observed at four GPS permanent stations. Since the weighted mean temperature relates to the water vapor pressure and temperature profile at a site, the accuracy of water vapor information which were estimated from GPS tropospheric wet delay is proportional to the accuracy of the weighted mean temperature. The adaption of Korean seasonal weighted mean temperature model, as an alternative to other formulae which are suggested from other nation, provides an improvement in the accuracy of the GPS PWV estimation. Therefore, it can be concluded that the seasonally appropriate weighted mean temperature model, which is used to convert actual zenith wet delay (ZWD) to the PWV, can be more reduced the relative biases of PWV estimated from GPS signal delays in the troposphere than other annual model, so that it would be useful for GPS PWV estimation with high accuracy.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

Determination of Korean Weighted Mean Temperature for Calculation of Tropospheric Zenith Hydrostatic Delay (대류권 천정 방향 건조 지연량 계산을 위한 우리나라 가중 평균 온도식 결정)

  • 송동섭;황학;윤홍식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.47-53
    • /
    • 2004
  • Water vapor is an important parameter in monitoring changes in the Earth's climate and it can be used to improve weather forecasting However, it haven't observed accurately by reasons of structural and economic problem of observation. GPS meteorology technique for precipitable water vapor measurement is currently actively being researched an advanced nation. Main issue of GPS meteorology is an accuracy of PWV measurement related weighted mean temperature and meteorological data. In this study, the korean weighted mean temperature had been recalculated by a linear regression method based on meteorological observations from 6 radiosonde stations for 2003 year. We examined the accuracy of PWV estimates from GPS observations and Radiosonde observations by new korean weighted mean temperature and others.

  • PDF