• Title/Summary/Keyword: Precession Motion

Search Result 24, Processing Time 0.025 seconds

Dating Sun's Locations at Equinoxes Inscribed on Cheonsang Yeolcha Bunyajido

  • Sang-Hyeon Ahn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.201-212
    • /
    • 2023
  • The inscription of Cheonsang Yeolcha Bunyajido (天象列次分野之圖) has the sun's locations at the equinoxes, which must have been copied from the astronomical treatises in Chinese historical annals, Songshu (宋書) and Jinshu (晉書). According to the treatises, an astronomer Wang Fan (王蕃, 228-266 CE) referred those values from a calendrical system called Qianxiangli (乾象曆, 223 CE), from which it is confirmed that it adopted the sun's location at the winter solstice of the $(21{\frac{1}{4}})^{th}$ du of the 8th lunar lodge Dou (斗) as the reference direction for equatorial lodge angles. This indicates that the sun's locations at equinoxes and solstices in the calendrical system are the same as those in Jingchuli (景初曆, 237 CE). Hence, we propose that the sun's location at the autumnal equinox in Cheonsang Yeolcha Bunyajido should be corrected from 'wu du shao ruo' (五度少弱), meaning the $(5{\frac{1}{6}})^{th}$ du, to 'wu du ruo' (五度弱), meaning the $(4{\frac{11}{12}})^{th}$ du, of the first lunar lodge Jiao (角), as seen in Jingchuli. We reconstruct the polar coordinate system used in circular star charts, assuming that the mean motion rule was applied and its reference direction was the sun's location at the winter solstice. Considering the precession, we determined the observational epoch of the sun's location at the winter solstice to be to = -18.3 ± 43.0 adopting the observational error of the so-called archaic determinatives (古度). It is noteworthy that the sun's locations at equinoxes inscribed in Cheonsang Yeolcha Bunyajido originated from Houhan Sifenli (後漢 四分曆) of the Latter Han dynasty (85 CE), while the coordinate origin in the star chart is related to Taichuli (太初曆) of the Former Han dynasty (104 BCE).

LATEST RESULTS OF THE MAXI MISSION

  • MIHARA, TATEHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.559-563
    • /
    • 2015
  • Monitor of All-sky X-ray Image (MAXI) is a Japanese X-ray all-sky surveyer mounted on the International Space Station (ISS). It has been scanning the whole sky since 2009 during every 92-minute ISS rotation. X-ray transients are quickly found by the real-time nova-search program. As a result, MAXI has issued 133 Astronomer's Telegrams and 44 Gamma-ray burst Coordinated Networks so far. MAXI has discovered six new black holes (BH) in 4.5 years. Long-term behaviors of the MAXI BHs can be classified into two types by their outbursts; a fast-rise exponential-decay type and a fast-rise flat-top one. The slit camera is suitable for accumulating data over a long time. MAXI issued a 37-month catalog containing 500 sources above a ~0.6 mCrab detection limit at 4-10 keV in the region ${\mid}{b}{\mid}$ > $10^{\circ}$. The SSC instrument utilizing an X-ray CCD has detected diffuse soft X-rays extending over a large solid angle, such as the Cygnus super bubble. MAXI/SSC has also detcted a Ne emission line from the rapid soft X-ray nova MAXI J0158-744. The overall shapes of outbursts in Be X-ray binaries (BeXRB) are precisely observed with MAXI/GSC. BeXRB have two kinds of outbursts, a normal outburst and a giant one. The peak dates of the subsequent giant outbursts of A0535+26 repeated with a different period than the orbital one. The Be stellar disk is considered to either have a precession motion or a distorted shape. The long-term behaviors of low-mass X-ray binaries (LMXB) containing weakly magnetized neutron stars are investigated. Transient LMXBs (Aql X-1 and 4U 1608-52) repeated outbursts every 200-1000 days, which is understood by the limit-cycle of hydrogen ionization states in the outer accretion disk. A third state (very dim state) in Aql X-1 and 4U 1608-52 was interpreted as the propeller effect in the unified picture of LMXB. Cir X-1 is a peculiar source in the sense that its long-term behavior is not like typical LMXBs. The luminosity sometimes decreases suddenly at periastron. It might be explained by the stripping of the outer accretion disk by a clumpy stellar wind. MAXI observed 64 large flares from 22 active stars (RS CVns, dMe stars, Argol types, young stellar objects) over 4 years. The total energies are $10^{34}-10^{36}$ erg $s^{-1}$. Since MAXI can measure the spectrum (temperature and emission measure), we can estimate the size of the plasma and the magnetic fields. The size sometimes exceeds the size of the star. The magnetic field is in the range of 10-100 gauss, which is a typical value for solar flares.

Design of RF Coil for Low Magnetic-Field Osteoblast Reformation System (저 자기장 조골세포 재형성 시스템용 RF 코일 설계)

  • Mun, Sung Hyuk;Cho, Choon Sik;Kim, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.821-827
    • /
    • 2018
  • In devices used for re-forming osteoblasts to treat osteoporosis, a magnetic field is applied from the outside of the bone, and the minerals contained in the bone are aligned in a certain direction and undergo precessional motion. When a $90^{\circ}$ RF pulse is applied by using an RF coil, protons of minerals are brought to an excited state, and phosphorus activity promoting the deposition of osteoblasts in the bone is increased, thereby reshaping the bone. Miniaturizing the RF coil that generates a signal corresponding to the harmonic of the precessional motional frequency by means of the $90^{\circ}$ RF pulse can drastically reduce the overall size of the bone reshaping system. In this study, we propose a methodology for the miniaturization of the RF coil that can be used for osteoblast re-formation using a bone reshaping system. The capacitance of the designed RF coil is 25 pF, the inductance is approximately 100 nH, and the resonance frequency is 96 MHz. The radius of the end ring of the designed RF coil is 18 cm, and the total length of the leg is $2{\times}11.6cm$. The performance of the coil is verified through post-design measurement.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF