• Title/Summary/Keyword: Precedence constraints

Search Result 58, Processing Time 0.025 seconds

A Study on the Performance Analysis of Process Model with Resource Constraints in Concurrent Engineering Environment (동시공학 환경에서 자원제약이 있는 프로세스 모델의 성능분석에 관한 연구)

  • 강동진;이상용;유왕진;정용식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.231-240
    • /
    • 1999
  • A major concern in Concurrent Engineering is the control and management of workload in a period of process. As a general rule, leveling the peak of workload in certain period is difficult because concurrent processing is comprised of various processes, including overlapping, paralleling looping and so on. Therefore, the workload management with resource constraints is so beneficial that effective methods to analyze design process are momentous. This study presents the Timed Petri Nets approach of precedence logic networks, and provides an alternative for users to analyze constraint processes to resolve conflicts of resources. Another approach to Continuous Time Markov Chain using Stochastic Petri Nets is also proposed. These approaches are expected to facilitate resolving resource constrained scheduling problems more systematically in Concurrent Engineering environment.

  • PDF

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.

Generation of Block Assembly Sequence by Case Based Reasoning (사례기반 추론을 이용한 블록조립계획)

  • 신동목;김태운;서윤호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.163-170
    • /
    • 2004
  • In order to automatically determine the sequences of block assembly operations in shipbuilding, a process planning system using case-based reasoning (CBR) is developed. A block-assembly planning problem is modeled as a constraint satisfaction problem where the precedence relations between operations are considered constraints. The process planning system generates an assembly sequence by adapting information such as solutions and constraints collected from similar cases retrieved from the case base. In order to find similar cases, the process planning system first matches the parts of the problem and the parts of each case based on their roles in the assembly, and then it matches the relations related to the parts-pairs. The part involved in more operations are considered more important. The process planning system is applied to simple examples fur verification and comparison.

Static Homogeneous Multiprocessor Task Graph Scheduling Using Ant Colony Optimization

  • Boveiri, Hamid Reza;Khayami, Raouf
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3046-3070
    • /
    • 2017
  • Nowadays, the utilization of multiprocessor environments has been increased due to the increase in time complexity of application programs and decrease in hardware costs. In such architectures during the compilation step, each program is decomposed into the smaller and maybe dependent segments so-called tasks. Precedence constraints, required execution times of the tasks, and communication costs among them are modeled using a directed acyclic graph (DAG) named task-graph. All the tasks in the task-graph must be assigned to a predefined number of processors in such a way that the precedence constraints are preserved, and the program's completion time is minimized, and this is an NP-hard problem from the time-complexity point of view. The results obtained by different approaches are dominated by two major factors; first, which order of tasks should be selected (sequence subproblem), and second, how the selected sequence should be assigned to the processors (assigning subproblem). In this paper, a hybrid proposed approach has been presented, in which two different artificial ant colonies cooperate to solve the multiprocessor task-scheduling problem; one colony to tackle the sequence subproblem, and another to cope with assigning subproblem. The utilization of background knowledge about the problem (different priority measurements of the tasks) has made the proposed approach very robust and efficient. 125 different task-graphs with various shape parameters such as size, communication-to-computation ratio and parallelism have been utilized for a comprehensive evaluation of the proposed approach, and the results show its superiority versus the other conventional methods from the performance point of view.

Automatic Generation of Machining Sequence for Machined Parts Using Machining Features (특징형상을 이용한 절삭가공부품의 가공순서 자동생성)

  • Woo, Yoonhwan;Kang, Sangwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.642-648
    • /
    • 2016
  • As 3D solid modeling prevails, a range of applications have become possible and intensive research on the integration of CAD/CAM has been conducted. As a consequence, methods to recognize the machining features from CAD models have been developed. On the other hand, generating a machining sequence using the machining features is still a problem due to a combinatorial problem with a large number of machining features. This paper proposes a new method that utilizes the precedence constraints through which the number of the combinations is reduced drastically. This method can automatically generate machining sequences requiring the lowest amount of machining time. An airplane part was used to test the usefulness of the proposed method.

Synthesis of Asynchronous Circuits from Deterministic Signal Transition Graph with Timing Constraints (시간 제한 조건을 가진 결정성 신호 전이 그래프로부터 비동기 회로의 합성)

  • Kim, Hee-Sook;Jung, Sung-Tae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.216-226
    • /
    • 2000
  • This paper presents a new method to synthesize timed asynchronous circuits directly from the specification without generating a state graph. The synthesis procedure begins with a deterministic signal transition graph specification with timing constraints. First, a timing analysis extracts the timed concurrency and timed causality relations between any two signal transitions. Then, a hazard-free implementation under the timing constraints is synthesized by constructing a precedence graph and finding paths in the graph. The major result of this work is that the method does not suffer from the state explosion problem, achieves significant reductions in synthesis time, and generates circuits that have nearly the same area as compared to previous methods.

  • PDF

A Hierarchical Expert System for Process Planning and Material Selection (공정계획과 재료선정의 동시적 해결을 위한 계층구조 전문가시스템)

  • 권순범;이영봉;이재규
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.29-40
    • /
    • 2000
  • Process planning (selection and ordering of processes) and material selection for product manufacturing are two key things determined before taking full-scale manufacturing. Knowledge on product design. material characteristics, processes, time and cost all-together are mutually related and should be considered concurrently. Due to the complexity of problem, human experts have got only one of the feasilbe solutions with their field knowledge and experiences. We propose a hierarchical expert system framework of knowledge representation and reasoning in order to overcome the complexity. Manufacturing processes have inherently hierarchical relationships, from top level processes to bottom level operation processes. Process plan of one level is posted in process blackboard and used for lower level process planning. Process information on blackboard is also used to adjust the process plan in order to resolve the dead-end or inconsistency situation during reasoning. Decision variables for process, material, tool, time and cost are represented as object frames, and their relationships are represented as constraints and rules. Constraints are for relationship among variables such as compatibility, numerical inequality etc. Rules are for causal relationships among variables to reflect human expert\`s knowledge such as process precedence. CRSP(Constraint and Rule Satisfaction Problem) approach is adopted in order to obtain solution to satisfy both constraints and rules. The trade-off procedure gives user chances to see the impact of change of important variables such as material, cost, time and helps to determine the preferred solution. We developed the prototype system using visual C++ MFC, UNIK, and UNlK-CRSP on PC.

  • PDF

Procedures of Transform the IDEF3 Process Model of Concurrent Design into CPM Precedence Network Model (동시공학적 설계의 IDEF3프로세스 모델을 CPM Network 모델로 변환하기 위한 절차)

  • 강동진
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.73-80
    • /
    • 1999
  • A major concern in Concurrent Engineering is the control and management of workload As a general rule, leveling the peak of workload in a period is difficult because concurrent processing is comprised of various processed, including overlapping, paralleling and looping and so on. Therefore workload management with resource constraints is so beneficial that effective methods to analyze design process are momentous. This paper presents a procedure to transform the IDEF3 process model into the precedence network model for more useful assessment of the process. This procedure is expected to facilitate resolving resource constrained scheduling problems more systematically in Concurrent Engineering environment.

  • PDF

Efficient Genetic Algorithm for Resource Constrained Project Scheduling Problem (자원 제약이 있는 프로젝트 스케줄링을 위한 효율적인 유전알고리즘)

  • Lee, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.59-66
    • /
    • 2011
  • Resource constrained project scheduling problem with multiple resource constraints as well as precedence constraints is well-known as one of the NP-hard problem. Since these problems can't be solved by the deterministic method during reasonable time, the heuristics are generally used for getting a sub-optimal during reasonable time. In this paper, we introduce an efficient genetic algorithm for resource constrained project scheduling problem using crossover which is applying schema theory and real world tournament selection strategy. Experimental results showed that the proposed algorithm is superior to conventional algorithm.

SIMULATED ANNEALING FOR LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • C.I. Yen
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.530-539
    • /
    • 2007
  • Many construction projects such as highways, pipelines, tunnels, and high-rise buildings typically contain repetitive activities. Research has shown that the Critical Path Method (CPM) is not efficient in scheduling linear construction projects that involve repetitive tasks. Linear Scheduling Method (LSM) is one of the techniques that have been developed since 1960s to handle projects with repetitive characteristics. Although LSM has been regarded as a technique that provides significant advantages over CPM in linear construction projects, it has been mainly viewed as a graphical complement to the CPM. Studies of scheduling linear construction projects with resource consideration are rare, especially with multiple resource constraints. The objective of this proposed research is to explore a resource assignment mechanism, which assigns multiple critical resources to all activities to minimize the project duration while satisfying the activities precedence relationship and resource limitations. Resources assigned to an activity are allowed to vary within a range at different stations, which is a combinatorial optimization problem in nature. A heuristic multiple resource allocation algorithm is explored to obtain a feasible initial solution. The Simulated Annealing search algorithm is then utilized to improve the initial solution for obtaining near-optimum solutions. A housing example is studied to demonstrate the resource assignment mechanism.

  • PDF