• Title/Summary/Keyword: Pre-trained Model

Search Result 286, Processing Time 0.024 seconds

Robust architecture search using network adaptation

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.290-294
    • /
    • 2021
  • Experts have designed popular and successful model architectures, which, however, were not the optimal option for different scenarios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a network adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than that of the State Of The Art (SOTA) NAS method.

A BERT-Based Automatic Scoring Model of Korean Language Learners' Essay

  • Lee, Jung Hee;Park, Ji Su;Shon, Jin Gon
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.282-291
    • /
    • 2022
  • This research applies a pre-trained bidirectional encoder representations from transformers (BERT) handwriting recognition model to predict foreign Korean-language learners' writing scores. A corpus of 586 answers to midterm and final exams written by foreign learners at the Intermediate 1 level was acquired and used for pre-training, resulting in consistent performance, even with small datasets. The test data were pre-processed and fine-tuned, and the results were calculated in the form of a score prediction. The difference between the prediction and actual score was then calculated. An accuracy of 95.8% was demonstrated, indicating that the prediction results were strong overall; hence, the tool is suitable for the automatic scoring of Korean written test answers, including grammatical errors, written by foreigners. These results are particularly meaningful in that the data included written language text produced by foreign learners, not native speakers.

Web-based University Classroom Attendance System Based on Deep Learning Face Recognition

  • Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.503-523
    • /
    • 2022
  • Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.

Performance Evaluation of Pre-trained Language Models in Multi-Goal Conversational Recommender Systems (다중목표 대화형 추천시스템을 위한 사전 학습된 언어모델들에 대한 성능 평가)

  • Taeho Kim;Hyung-Jun Jang;Sang-Wook Kim
    • Smart Media Journal
    • /
    • v.12 no.6
    • /
    • pp.35-40
    • /
    • 2023
  • In this study paper, we examine pre-trained language models used in Multi-Goal Conversational Recommender Systems (MG-CRS), comparing and analyzing their performances of various pre-trained language models. Specifically, we investigates the impact of the sizes of language models on the performance of MG-CRS. The study targets three types of language models - of BERT, GPT2, and BART, and measures and compares their accuracy in two tasks of 'type prediction' and 'topic prediction' on the MG-CRS dataset, DuRecDial 2.0. Experimental results show that all models demonstrated excellent performance in the type prediction task, but there were notable provide significant performance differences in performance depending on among the models or based on their sizes in the topic prediction task. Based on these findings, the study provides directions for improving the performance of MG-CRS.

An Open Medical Platform to Share Source Code and Various Pre-Trained Weights for Models to Use in Deep Learning Research

  • Sungchul Kim;Sungman Cho;Kyungjin Cho;Jiyeon Seo;Yujin Nam;Jooyoung Park;Kyuri Kim;Daeun Kim;Jeongeun Hwang;Jihye Yun;Miso Jang;Hyunna Lee;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2073-2081
    • /
    • 2021
  • Deep learning-based applications have great potential to enhance the quality of medical services. The power of deep learning depends on open databases and innovation. Radiologists can act as important mediators between deep learning and medicine by simultaneously playing pioneering and gatekeeping roles. The application of deep learning technology in medicine is sometimes restricted by ethical or legal issues, including patient privacy and confidentiality, data ownership, and limitations in patient agreement. In this paper, we present an open platform, MI2RLNet, for sharing source code and various pre-trained weights for models to use in downstream tasks, including education, application, and transfer learning, to encourage deep learning research in radiology. In addition, we describe how to use this open platform in the GitHub environment. Our source code and models may contribute to further deep learning research in radiology, which may facilitate applications in medicine and healthcare, especially in medical imaging, in the near future. All code is available at https://github.com/mi2rl/MI2RLNet.

Breast Cancer Histopathological Image Classification Based on Deep Neural Network with Pre-Trained Model Architecture (사전훈련된 모델구조를 이용한 심층신경망 기반 유방암 조직병리학적 이미지 분류)

  • Mudeng, Vicky;Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.399-401
    • /
    • 2022
  • A definitive diagnosis to classify the breast malignancy status may be achieved by microscopic analysis using surgical open biopsy. However, this procedure requires experts in the specializing of histopathological image analysis directing to time-consuming and high cost. To overcome these issues, deep learning is considered practically efficient to categorize breast cancer into benign and malignant from histopathological images in order to assist pathologists. This study presents a pre-trained convolutional neural network model architecture with a 100% fine-tuning scheme and Adagrad optimizer to classify the breast cancer histopathological images into benign and malignant using a 40× magnification BreaKHis dataset. The pre-trained architecture was constructed using the InceptionResNetV2 model to generate a modified InceptionResNetV2 by substituting the last layer with dense and dropout layers. The results by demonstrating training loss of 0.25%, training accuracy of 99.96%, validation loss of 3.10%, validation accuracy of 99.41%, test loss of 8.46%, and test accuracy of 98.75% indicated that the modified InceptionResNetV2 model is reliable to predict the breast malignancy type from histopathological images. Future works are necessary to focus on k-fold cross-validation, optimizer, model, hyperparameter optimization, and classification on 100×, 200×, and 400× magnification.

  • PDF

Sentiment analysis of Korean movie reviews using XLM-R

  • Shin, Noo Ri;Kim, TaeHyeon;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.86-90
    • /
    • 2021
  • Sentiment refers to a person's thoughts, opinions, and feelings toward an object. Sentiment analysis is a process of collecting opinions on a specific target and classifying them according to their emotions, and applies to opinion mining that analyzes product reviews and reviews on the web. Companies and users can grasp the opinions of public opinion and come up with a way to do so. Recently, natural language processing models using the Transformer structure have appeared, and Google's BERT is a representative example. Afterwards, various models came out by remodeling the BERT. Among them, the Facebook AI team unveiled the XLM-R (XLM-RoBERTa), an upgraded XLM model. XLM-R solved the data limitation and the curse of multilinguality by training XLM with 2TB or more refined CC (CommonCrawl), not Wikipedia data. This model showed that the multilingual model has similar performance to the single language model when it is trained by adjusting the size of the model and the data required for training. Therefore, in this paper, we study the improvement of Korean sentiment analysis performed using a pre-trained XLM-R model that solved curse of multilinguality and improved performance.

Effect of deep transfer learning with a different kind of lesion on classification performance of pre-trained model: Verification with radiolucent lesions on panoramic radiographs

  • Yoshitaka Kise;Yoshiko Ariji;Chiaki Kuwada;Motoki Fukuda;Eiichiro Ariji
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • Purpose: The aim of this study was to clarify the influence of training with a different kind of lesion on the performance of a target model. Materials and Methods: A total of 310 patients(211 men, 99 women; average age, 47.9±16.1 years) were selected and their panoramic images were used in this study. We created a source model using panoramic radiographs including mandibular radiolucent cyst-like lesions (radicular cyst, dentigerous cyst, odontogenic keratocyst, and ameloblastoma). The model was simulatively transferred and trained on images of Stafne's bone cavity. A learning model was created using a customized DetectNet built in the Digits version 5.0 (NVIDIA, Santa Clara, CA). Two machines(Machines A and B) with identical specifications were used to simulate transfer learning. A source model was created from the data consisting of ameloblastoma, odontogenic keratocyst, dentigerous cyst, and radicular cyst in Machine A. Thereafter, it was transferred to Machine B and trained on additional data of Stafne's bone cavity to create target models. To investigate the effect of the number of cases, we created several target models with different numbers of Stafne's bone cavity cases. Results: When the Stafne's bone cavity data were added to the training, both the detection and classification performances for this pathology improved. Even for lesions other than Stafne's bone cavity, the detection sensitivities tended to increase with the increase in the number of Stafne's bone cavities. Conclusion: This study showed that using different lesions for transfer learning improves the performance of the model.

Burmese Sentiment Analysis Based on Transfer Learning

  • Mao, Cunli;Man, Zhibo;Yu, Zhengtao;Wu, Xia;Liang, Haoyuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.535-548
    • /
    • 2022
  • Using a rich resource language to classify sentiments in a language with few resources is a popular subject of research in natural language processing. Burmese is a low-resource language. In light of the scarcity of labeled training data for sentiment classification in Burmese, in this study, we propose a method of transfer learning for sentiment analysis of a language that uses the feature transfer technique on sentiments in English. This method generates a cross-language word-embedding representation of Burmese vocabulary to map Burmese text to the semantic space of English text. A model to classify sentiments in English is then pre-trained using a convolutional neural network and an attention mechanism, where the network shares the model for sentiment analysis of English. The parameters of the network layer are used to learn the cross-language features of the sentiments, which are then transferred to the model to classify sentiments in Burmese. Finally, the model was tuned using the labeled Burmese data. The results of the experiments show that the proposed method can significantly improve the classification of sentiments in Burmese compared to a model trained using only a Burmese corpus.

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.13-23
    • /
    • 2022
  • In this study we leveraged a probing method to evaluate how a pre-trained L2 LSTM language model represents sentences with relative and coordinate clauses. The probing experiment employed adapted models based on the pre-trained L2 language models to trace the syntactic properties of sentence embedding vector representations. The dataset for probing was automatically generated using several templates related to different sentence structures. To classify the syntactic properties of sentences for each probing task, we measured the adaptation effects of the language models using syntactic priming. We performed linear mixed-effects model analyses to analyze the relation between adaptation effects in a complex statistical manner and reveal how the L2 language models represent syntactic features for English sentences. When the L2 language models were compared with the baseline L1 Gulordava language models, the analogous results were found for each probing task. In addition, it was confirmed that the L2 language models contain syntactic features of relative and coordinate clauses hierarchically in the sentence embedding representations.